Relative equilibria of point vortices on the sphere

被引:65
|
作者
Lim, C [1 ]
Montaldi, J
Roberts, M
机构
[1] Rensselaer Polytech Inst, Troy, NY 12180 USA
[2] Inst Nonlineaire Nice, UMR CNRS 6618, F-06560 Valbonne, France
[3] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
point vortices; symmetry; first integrals; flow on a sphere;
D O I
10.1016/S0167-2789(00)00167-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of many different symmetry types of relative equilibria for systems of identical point vortices on a non-rotating sphere. The proofs use the rotational symmetry group SO(3) and the resulting conservation laws, the time-reversing reflectional symmetries in O(3), and the finite symmetry group of permutations of identical vortices. Results include both global existence theorems and local results on bifurcations from equilibria. A more detailed study is made of relative equilibria which consist of two parallel rings with n vortices in each rotating about a common axis. The paper ends with discussions of the bifurcation diagrams for systems of 3-6 identical vortices. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:97 / 135
页数:39
相关论文
共 50 条
  • [41] Equations of motion for weakly compressible point vortices
    Smith, Stefan G. Llewellyn G.
    Chu, T.
    Hu, Z.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2226):
  • [42] Energy distribution in a neutral gas of point vortices
    Le, KC
    Berdichevsky, VL
    JOURNAL OF STATISTICAL PHYSICS, 2001, 104 (3-4) : 881 - 892
  • [43] Ring Configurations of Point Vortices in Polar Atmospheres
    David G. Dritschel
    Regular and Chaotic Dynamics, 2021, 26 : 467 - 481
  • [44] Identification of regions of fastest mixing in a system of point vortices
    Ramachandran, P
    Rajan, SC
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2002, 38 (05) : 447 - 469
  • [45] MOTION OF A CYLINDER RIGID BODY INTERACTING WITH POINT VORTICES
    Sokolov, S. V.
    COUPLED PROBLEMS IN SCIENCE AND ENGINEERING VII (COUPLED PROBLEMS 2017), 2017, : 204 - 215
  • [46] THE GEOMETRY AND DYNAMICS OF INTERACTING RIGID BODIES AND POINT VORTICES
    Vankerschaver, Joris
    Kanso, Eva
    Marsden, Jerrold
    JOURNAL OF GEOMETRIC MECHANICS, 2009, 1 (02): : 223 - 266
  • [47] On the dynamics of point vortices with positive intensities collapsing with the boundary
    Donati, Martin
    Godard-Cadillac, Ludovic
    Iftimie, Dragos
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 470
  • [48] Self-similar point vortices and confinement of vorticity
    Iftimie, Dragos
    Marchioro, Carlo
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (03) : 347 - 363
  • [49] Interaction of point sources and vortices for incompressible planar fluids
    Lacomba E.A.
    Qualitative Theory of Dynamical Systems, 2009, 8 (2) : 371 - 379
  • [50] Existence and Stability of Four-Vortex Collinear Relative Equilibria with Three Equal Vorticities
    Menezes, Brian
    Roberts, Gareth E.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2018, 17 (01): : 1023 - 1051