Relative equilibria of point vortices on the sphere

被引:65
|
作者
Lim, C [1 ]
Montaldi, J
Roberts, M
机构
[1] Rensselaer Polytech Inst, Troy, NY 12180 USA
[2] Inst Nonlineaire Nice, UMR CNRS 6618, F-06560 Valbonne, France
[3] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
point vortices; symmetry; first integrals; flow on a sphere;
D O I
10.1016/S0167-2789(00)00167-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of many different symmetry types of relative equilibria for systems of identical point vortices on a non-rotating sphere. The proofs use the rotational symmetry group SO(3) and the resulting conservation laws, the time-reversing reflectional symmetries in O(3), and the finite symmetry group of permutations of identical vortices. Results include both global existence theorems and local results on bifurcations from equilibria. A more detailed study is made of relative equilibria which consist of two parallel rings with n vortices in each rotating about a common axis. The paper ends with discussions of the bifurcation diagrams for systems of 3-6 identical vortices. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:97 / 135
页数:39
相关论文
共 50 条
  • [21] Point vortex equilibria and optimal packings of circles on a sphere
    Newton, Paul K.
    Sakajo, Takashi
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2129): : 1468 - 1490
  • [22] Relative equilibrium and collapse configurations of four point vortices
    K. A. O’neil
    Regular and Chaotic Dynamics, 2007, 12 : 117 - 126
  • [23] Relative equilibrium and collapse configurations of four point vortices
    O'Neil, K. A.
    REGULAR & CHAOTIC DYNAMICS, 2007, 12 (02): : 117 - 126
  • [24] Determination of Stable Branches of Relative Equilibria of the N-Vortex Problem on the Sphere
    Constantineau, K.
    Garcia-Azpeitia, C.
    Garcia-Naranjo, L. C.
    Lessard, J. -p.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2025, 406 (02)
  • [25] Dynamics of Three Vortices on a Sphere
    Borisov A.V.
    Mamaev I.S.
    Kilin A.A.
    Regular and Chaotic Dynamics, 2018, 23 (1) : 127 - 134
  • [26] Rotation, collapse, and scattering of point vortices
    Demina, M. V.
    Kudryashov, N. A.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2014, 28 (03) : 357 - 368
  • [27] Relative equilibria of molecules
    Montaldi, JA
    Roberts, RM
    JOURNAL OF NONLINEAR SCIENCE, 1999, 9 (01) : 53 - 88
  • [28] Generalised point vortices on a plane
    Galajinsky, Anton
    PHYSICS LETTERS B, 2022, 829
  • [29] The kinetic theory of point vortices
    Marmanis, H
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1970): : 587 - 606
  • [30] Bifurcations and Chaos in the Dynamics of Two Point Vortices in an Acoustic Wave
    Vetchanin, E. V.
    Kazakov, A. O.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (04):