Relative equilibria of point vortices on the sphere

被引:65
|
作者
Lim, C [1 ]
Montaldi, J
Roberts, M
机构
[1] Rensselaer Polytech Inst, Troy, NY 12180 USA
[2] Inst Nonlineaire Nice, UMR CNRS 6618, F-06560 Valbonne, France
[3] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
point vortices; symmetry; first integrals; flow on a sphere;
D O I
10.1016/S0167-2789(00)00167-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of many different symmetry types of relative equilibria for systems of identical point vortices on a non-rotating sphere. The proofs use the rotational symmetry group SO(3) and the resulting conservation laws, the time-reversing reflectional symmetries in O(3), and the finite symmetry group of permutations of identical vortices. Results include both global existence theorems and local results on bifurcations from equilibria. A more detailed study is made of relative equilibria which consist of two parallel rings with n vortices in each rotating about a common axis. The paper ends with discussions of the bifurcation diagrams for systems of 3-6 identical vortices. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:97 / 135
页数:39
相关论文
共 50 条
  • [1] POINT VORTICES ON THE SPHERE: STABILITY OF SYMMETRIC RELATIVE EQUILIBRIA
    Laurent-Polz, Frederic
    Montaldi, James
    Roberts, Mark
    JOURNAL OF GEOMETRIC MECHANICS, 2011, 3 (04): : 439 - 486
  • [2] Equilibria and stability of four point vortices on a sphere
    Dritschel, David G.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2241):
  • [3] Bilinear Relative Equilibria of Identical Point Vortices
    H. Aref
    P. Beelen
    M. Brøns
    Journal of Nonlinear Science, 2012, 22 : 849 - 885
  • [4] Bilinear Relative Equilibria of Identical Point Vortices
    Aref, H.
    Beelen, P.
    Brons, M.
    JOURNAL OF NONLINEAR SCIENCE, 2012, 22 (05) : 849 - 885
  • [5] Relative equilibrium configurations of point vortices on a sphere
    Demina, Maria V.
    Kudryashov, Nikolai A.
    REGULAR & CHAOTIC DYNAMICS, 2013, 18 (04): : 344 - 355
  • [6] Relative equilibrium configurations of point vortices on a sphere
    Maria V. Demina
    Nikolai A. Kudryashov
    Regular and Chaotic Dynamics, 2013, 18 : 344 - 355
  • [7] Relative equilibria of point vortices and the fundamental theorem of algebra
    Aref, Hassan
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2132): : 2168 - 2184
  • [8] On relative equilibria and integrable dynamics of point vortices in periodic domains
    Stremler, Mark A.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2010, 24 (1-4) : 25 - 37
  • [9] On relative equilibria and integrable dynamics of point vortices in periodic domains
    Mark A. Stremler
    Theoretical and Computational Fluid Dynamics, 2010, 24 : 25 - 37
  • [10] Symmetric Relative Equilibria with One Dominant and Four Infinitesimal Point Vortices
    Hoyer-Leitzel, Alanna
    Le, Phuong
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2025,