Approximate McKean-Vlasov representations for a class of SPDEs

被引:65
作者
Crisan, Dan [1 ]
Xiong, Jie [2 ,3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
[2] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[3] Hebei Normal Univ, Dept Math, Shijiazhuang 050016, Peoples R China
关键词
stochastic partial differential equations; particle approximations; McKean-Vlasov equations; Zakai equation; Kushner-Stratonovitch equation; non-linear diffusions; PARTICLE APPROXIMATION; CONVERGENCE;
D O I
10.1080/17442500902723575
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The solution (sic) = ((sic)(t))(t >= 0) 0 of a class of linear stochastic partial differential equations is approximated using Clark's robust representation approach. The ensuing approximations are shown to coincide with the time marginals of solutions of a certain McKean-Vlasov type equation. We prove existence and uniqueness of the solution of the McKean-Vlasov equation.
引用
收藏
页码:53 / 68
页数:16
相关论文
共 20 条
[1]  
[Anonymous], 2004, PROB APPL S
[2]   On a robust version of the integral representation formula of nonlinear filtering [J].
Clark, JMC ;
Crisan, D .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 133 (01) :43-56
[3]  
CLARK JMC, 1977, P 2 NATO ADV STUD I, P721
[4]  
Crisan D, 2003, ANN PROBAB, V31, P693
[5]   A survey of convergence results on particle filtering methods for practitioners [J].
Crisan, D ;
Doucet, A .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (03) :736-746
[6]   A particle approximation of the solution of the Kushner-Stratonovitch equation [J].
Crisan, D ;
Lyons, T .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 115 (04) :549-578
[7]   Interacting particle systems approximations of the Kushner-Stratonovitch equation [J].
Crisan, D ;
Del Moral, P ;
Lyons, TJ .
ADVANCES IN APPLIED PROBABILITY, 1999, 31 (03) :819-838
[8]  
CRISAN D, NUMERICAL SOLU UNPUB
[9]  
Del Moral P, 2000, STOCH PROC APPL, V86, P193
[10]  
Del Moral P, 2000, LECT NOTES MATH, V1729, P2