Line-scanning fiber bundle endomicroscopy with a virtual detector slit

被引:30
|
作者
Hughes, Michael [1 ]
Yang, Guang-Zhong [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Inst Global Hlth Innovat, Hamlyn Ctr Robot Surg, London SW7 2AZ, England
来源
BIOMEDICAL OPTICS EXPRESS | 2016年 / 7卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
HIGH-RESOLUTION MICROENDOSCOPY; CONFOCAL ENDOMICROSCOPY; LOW-COST; MICROSCOPY; ESOPHAGUS;
D O I
10.1364/BOE.7.002257
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Coherent fiber bundles can be used to relay the image plane from the distal tip of an endomicroscope to an external confocal microscopy system. The frame rate is therefore determined by the speed of the microscope's laser scanning system which, at 10-20 Hz, may be undesirably low for in vivo clinical applications. Line-scanning allows an increase in the frame rate by an order of magnitude in exchange for some loss of optical sectioning, but the width of the detector slit cannot easily be adapted to suit different imaging conditions. The rolling shutter of a CMOS camera can be used as a virtual detector slit for a bench-top line-scanning confocal microscope, and here we extend this idea to endomicroscopy. By synchronizing the camera rolling shutter with a scanning laser line we achieve confocal imaging with an electronically variable detector slit. This architecture allows us to acquire every other frame with the detector slit offset by a known distance, and we show that subtracting this second image leads to improved optical sectioning. (C) 2016 Optical Society of America
引用
收藏
页码:2257 / 2268
页数:12
相关论文
共 50 条
  • [21] Axial Line-Scanning STED-FCS
    Gao, Peng
    Nienhaus, Karin
    Nienhaus, G. Ulrich
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 182A - 182A
  • [22] Simulation of imaging with a θ line-scanning confocal microscope
    Simon, Blair
    DiMarzio, Charles A.
    THREE-DIMENSIONAL AND MULTIDIMENSIONAL MICROSCOPY: IMAGE ACQUISITION AND PROCESSING XV, 2008, 6861
  • [23] Line-scanning speeds up Brillouin microscopy
    Nargess Khalilgharibi
    Giulia Paci
    Yanlan Mao
    Nature Methods, 2023, 20 : 643 - 644
  • [24] Line-defect calibration for line-scanning projection display
    An, Seungdo
    Song, Jonghyeong
    Lapchuk, Anatoliy
    Yurlov, Victor
    Ryu, Seung-Won
    Kim, Eungju
    Yun, Sang Kyeong
    OPTICS EXPRESS, 2009, 17 (19): : 16492 - 16504
  • [25] Line-scanning quasi-confocal fluorescence imaging
    Yang B.
    Liu L.
    Liu Z.-Y.
    Ma S.-H.
    Chong X.-Y.
    He Y.-H.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2010, 18 (05): : 1028 - 1034
  • [26] Nodal line-scanning method for maskless optical lithography
    Johnson, Kenneth C.
    APPLIED OPTICS, 2014, 53 (34) : J7 - J18
  • [27] Pupil Engineering for a Confocal Reflectance Line-Scanning Microscope
    Patel, Yogesh G.
    Rajadhyaksha, Milind
    DiMarzio, Charles A.
    THREE-DIMENSIONAL AND MULTIDIMENSIONAL MICROSCOPY: IMAGE ACQUISITION AND PROCESSING XVIII, 2011, 7904
  • [28] Line-scanning Raman imaging spectroscopy for detection of fingerprints
    Deng, Sunan
    Liu, Le
    Liu, Zhiyi
    Shen, Zhiyuan
    Li, Guohua
    He, Yonghong
    APPLIED OPTICS, 2012, 51 (17) : 3701 - 3706
  • [29] Fourier ptychographic rapid superresolution imaging via line-scanning microscopy with virtual structural- modulated
    Wang, Famin
    Xiao, Yun
    Zhao, Jiawang
    Zhang, Yunhai
    Li, Hangfeng
    OPTICS AND LASERS IN ENGINEERING, 2021, 140
  • [30] Extended aperture line-scanning Hartmann wavefront sensor
    Xu, Hongfeng
    Wu, Jigang
    APPLIED OPTICS, 2021, 60 (12) : 3403 - 3411