A Karhunen-Loeve expansion for a mean-centered Brownian bridge

被引:19
|
作者
Deheuvels, Paul [1 ]
机构
[1] Univ Paris 06, LSTA, F-92340 Bourg La Reine, France
关键词
Gaussian processes; Karhunen-Loeve expansions; Wiener process; Brownian bridge; Cramer-von Mises tests of fit; tests of goodness of fit;
D O I
10.1016/j.spl.2007.03.011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The processes of the form y(K)(t) = B(t) - 6Kt(1 - t) integral(1)(0) B(u)du, where K is a constant, and B(center dot) a Brownian bridge, are investigated. We show that y(0)(center dot) and y(2)(center dot) are both Brownian bridges, and establish the independence of and integral(1)(0) B(u)du, this implying that the law of y(1)(center dot) coincides with the conditional law of B, given that integral B-1(0)(u) du = 0. We provide the Karhunen-Loeve expansion on [0, 1] of y(1)(center dot), making use of the Bessel functions J(1/2) and J(3/2). Applications and variants of these results are discussed. In particular, we establish a comparison theorem concerning the supremum distributions of y(K')(center dot) and y(K'')(center dot)) on [0, 1]. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1190 / 1200
页数:11
相关论文
共 16 条
  • [1] Karhunen-Loeve expansions for the detrended Brownian motion
    Ai, Xiaohui
    Li, Wenbo V.
    Liu, Guoqing
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (07) : 1235 - 1241
  • [2] Karhunen-Loeve expansions for weighted Wiener processes and Brownian bridges via bessel functions
    Deheuvels, P
    Martynov, G
    HIGH DIMENSIONAL PROBABILITY III, 2003, 55 : 57 - 93
  • [3] Karhunen-Loeve expansions of α-Wiener bridges
    Barczy, Matyas
    Igloi, Endre
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2011, 9 (01): : 65 - 84
  • [4] Karhunen-Loeve expansions for the m-th order detrended Brownian motion
    Ai XiaoHui
    Li, WenBo, V
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (10) : 2043 - 2052
  • [5] Karhunen-Loeve expansions for the m-th order detrended Brownian motion
    XiaoHui Ai
    WenBo V. Li
    Science China Mathematics, 2014, 57 : 2043 - 2052
  • [6] Karhunen-Loeve expansions for the m-th order detrended Brownian motion
    AI XiaoHui
    LI WenBo V.
    Science China(Mathematics), 2014, 57 (10) : 2043 - 2052
  • [7] Simulation of multi-dimensional random fields by Karhunen-Loeve expansion
    Zheng, Zhibao
    Dai, Hongzhe
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 324 : 221 - 247
  • [8] Large Scale Gaussian Processes with Matheron's Update Rule and Karhunen-Loeve Expansion
    Maatouk, Hassan
    Rulliere, Didier
    Bay, Xavier
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2022, 2024, 460 : 469 - 487
  • [9] On Three Families of Karhunen-Loeve Expansions Associated with Classical Orthogonal Polynomials
    Pycke, J. R.
    RESULTS IN MATHEMATICS, 2021, 76 (03)
  • [10] Conditional Karhunen-Loeve expansion for uncertainty quantification and active learning in partial differential equation models
    Tipireddy, Ramakrishna
    Barajas-Solano, David A.
    Tartakovsky, Alexandre M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 418