On Uniform h-stability of Non-autonomous Evolution Equations in Banach Spaces

被引:4
|
作者
Damak, Hanen [1 ]
机构
[1] Fac Sci Sax, Dept Math, Rd Soukra,BP 1171-3000, Sfax, Tunisia
关键词
Evolution operators; Gronwall's inequalities; h-stability; Mild solution; Non-autonomous evolution equations; Practical h-stability; ASYMPTOTIC STABILITY; POLYNOMIAL STABILITY; OPERATORS;
D O I
10.1007/s40840-021-01173-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are concerned with the global existence of mild solutions as well as uniform h-stability for non-autonomous evolution equations in a Banach space, where the operators in linear part (possibly unbounded) depend on time t and generate an evolution family. Under some estimates on the perturbation terms, we discuss the global uniform h-stability, the uniform h-stability and the global practical uniform h-stability using Gronwall integral inequalities. Some examples are provided to show the validity of the obtained results.
引用
收藏
页码:4367 / 4381
页数:15
相关论文
共 50 条
  • [1] On Uniform h-stability of Non-autonomous Evolution Equations in Banach Spaces
    Hanen Damak
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 4367 - 4381
  • [2] Maximal regularity for non-autonomous stochastic evolution equations in UMD Banach spaces
    Ton Viet Ta
    Yagi, Atsushi
    Yamamoto, Yoshitaka
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2017, 127 (05): : 857 - 879
  • [3] Maximal regularity for non-autonomous stochastic evolution equations in UMD Banach spaces
    Tôn Việt Tạ
    Atsushi Yagi
    Yoshitaka Yamamoto
    Proceedings - Mathematical Sciences, 2017, 127 : 857 - 879
  • [4] APPROXIMATE CONTROLLABILITY OF A NON-AUTONOMOUS EVOLUTION EQUATION IN BANACH SPACES
    Ravikumar, K.
    Mohan, Manil T.
    Anguraj, A.
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2021, 11 (03): : 461 - 485
  • [5] Existence and approximate controllability of non-autonomous functional impulsive evolution inclusions in Banach spaces
    Arora, S.
    Mohan, Manil T.
    Dabas, J.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 307 : 83 - 113
  • [6] Maximal regularity for semilinear non-autonomous evolution equations in temporally weighted spaces
    Hossni, Tebbani
    Mahdi, Achache
    ARABIAN JOURNAL OF MATHEMATICS, 2022, 11 (03) : 539 - 547
  • [7] On non-autonomous fractional evolution equations and applications
    Achache, Mahdi
    SEMIGROUP FORUM, 2024, 108 (03) : 511 - 535
  • [8] On evolution equations governed by non-autonomous forms
    El-Mennaoui, Omar
    Laasri, Hafida
    ARCHIV DER MATHEMATIK, 2016, 107 (01) : 43 - 57
  • [9] On evolution equations governed by non-autonomous forms
    Omar El-Mennaoui
    Hafida Laasri
    Archiv der Mathematik, 2016, 107 : 43 - 57
  • [10] Operator splitting for non-autonomous evolution equations
    Batkai, Andras
    Csomos, Petra
    Farkas, Balint
    Nickel, Gregor
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (07) : 2163 - 2190