Transient analysis of single-layered graphene sheet using the kp-Ritz method and nonlocal elasticity theory

被引:35
|
作者
Zhang, Yang [1 ,2 ]
Zhang, L. W. [3 ]
Liew, K. M. [2 ,4 ]
Yu, J. L. [1 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Mech Behav & Design Mat, Hefei 230026, Peoples R China
[2] City Univ Hong Kong, Dept Architecture & Civil Engn, Kowloon, Hong Kong, Peoples R China
[3] Shanghai Ocean Univ, Coll Informat Technol, Shanghai 201306, Peoples R China
[4] City Univ Hong Kong, Shenzhen Res Inst Bldg, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Single-layered graphene sheets; Transient analysis; kp-Ritz method; REINFORCED COMPOSITE PLATES; FREE-VIBRATION ANALYSIS; BUCKLING ANALYSIS; CARBON NANOTUBES; BEAM THEORY; MODEL;
D O I
10.1016/j.amc.2015.02.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an investigation on the transient analysis of single-layered graphene sheets (SLGSs) is performed using the element-free kp-Ritz method. The classical plate theory is used to describe the dynamic behavior of SLGSs. Nonlocal elasticity theory, in which nonlocal parameter is introduced, is incorporated to reflect the small effect. Newmark's method is employed to solve the discretized dynamic equations. Several numerical examples are presented to examine the effect of boundary conditions, aspect ratio, side length load distribution type and load variation type on the transient behavior of SLGSs. The present work can serve as the foundation for further investigation of the transient response of multi-layered graphene sheets. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:489 / 501
页数:13
相关论文
共 50 条
  • [41] Vibration analysis of defective graphene sheets using nonlocal elasticity theory
    Namin, S. F. Asbaghian
    Pilafkan, R.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2017, 93 : 257 - 264
  • [42] Vibration analysis of nano-single-layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory
    Murmu, T.
    Pradhan, S. C.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (06)
  • [43] Multiscale nonlinear frequency response analysis of single-layered graphene sheet under impulse and harmonic excitation using the atomistic finite element method
    Gajbhiye, Sachin O.
    Singh, S. P.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (14)
  • [44] Buckling of single layer graphene sheet based on nonlocal elasticity and higher order shear deformation theory
    Pradhan, S. C.
    PHYSICS LETTERS A, 2009, 373 (45) : 4182 - 4188
  • [45] Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model
    Bellal, Moussa
    Hebali, Habib
    Heireche, Houari
    Bousahla, Abdelmoumen Anis
    Tounsi, Abdeldjebbar
    Bourada, Fouad
    Mahmoud, S. R.
    Bedia, E. A. Adda
    Tounsi, Abdelouahed
    STEEL AND COMPOSITE STRUCTURES, 2020, 34 (05): : 643 - 655
  • [46] Vibration frequency analysis of rippled single-layered graphene sheet: Toward the nano resonant devices design
    Zhang, Zeyi
    Lan, Lan
    Wang, Yafei
    Wang, Changguo
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2019, 114
  • [47] Vibration analysis of CNT-reinforced functionally graded rotating cylindrical panels using the element-free kp-Ritz method
    Lei, Z. X.
    Zhang, L. W.
    Liew, K. M.
    COMPOSITES PART B-ENGINEERING, 2015, 77 : 291 - 303
  • [48] Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method
    Lei, Z. X.
    Liew, K. M.
    Yu, J. L.
    COMPOSITE STRUCTURES, 2013, 98 : 160 - 168
  • [49] Impact Dynamics of Single-Layered Graphene Sheets in Multibody Framework Using Nonlocal-Based-ANCF Modeling
    Wang, Qingtao
    Zhang, Yang
    Zhu, Qixin
    Pang, Zhaojun
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2019, 19 (09)
  • [50] Free vibration analysis of embedded single-layered nanoplates and graphene sheets by using the multiple time scale method
    Wu, Chih-Ping
    Li, Wei-Chen
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (05) : 838 - 854