A convergence analysis of the ADM and an application

被引:33
作者
Kaya, D [1 ]
Inan, IE [1 ]
机构
[1] Firat Univ, Dept Math, TR-23119 Elazig, Turkey
关键词
the decomposition method; modified Korteweg-de Vries equation; the self-canceling noise terms; the convergence of Adomian decomposition method;
D O I
10.1016/j.amc.2003.12.063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper by considering the decomposition scheme, we solve the modified Korteweg-de Vries equation (MKdV for short) for the initial condition. We prove the convergence of Adomian decomposition method (ADM) applied to the MKdV equation. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:1015 / 1025
页数:11
相关论文
共 19 条
[2]   NOISE TERMS IN DECOMPOSITION SOLUTION SERIES [J].
ADOMIAN, G ;
RACH, R .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1992, 24 (11) :61-64
[3]  
Adomian G., 1994, SOLVING FRONTIER PRO
[4]   CONVERGENCE OF ADOMIAN METHOD [J].
CHERRUAULT, Y .
KYBERNETES, 1989, 18 (02) :31-38
[5]   DECOMPOSITION METHODS - A NEW PROOF OF CONVERGENCE [J].
CHERRUAULT, Y ;
ADOMIAN, G .
MATHEMATICAL AND COMPUTER MODELLING, 1993, 18 (12) :103-106
[6]  
DRAZIN PG, 1989, SOLUTIONS INTRO
[7]   KORTEWEG-DEVRIES EQUATION AND GENERALIZATIONS .6. METHODS FOR EXACT SOLUTION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (01) :97-133
[9]  
Kato T., 1983, ADV MATH S, V8, P93
[10]   On the solution of a Korteweg-de Vries like equation by the decomposition method [J].
Kaya, D .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1999, 72 (04) :531-539