Dynamic Control of Metabolism

被引:44
作者
Ni, Cynthia [1 ]
Dinh, Christina V. [1 ]
Prather, Kristala L. J. [1 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
来源
ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, VOL 12, 2021 | 2021年 / 12卷
基金
美国国家科学基金会;
关键词
metabolic engineering; dynamic regulation; metabolic flux; microbial production; CONTROLLING GENE-EXPRESSION; ESCHERICHIA-COLI; RNA-POLYMERASE; STRUCTURAL IDENTIFICATION; CELL COMMUNICATION; PATHWAY REGULATION; STATIONARY-PHASE; REGULATOR SYSTEM; TET REPRESSOR; TOGGLE SWITCH;
D O I
10.1146/annurev-chembioeng-091720-125738
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Metabolic engineering reprograms cells to synthesize value-added products. In doing so, endogenous genes are altered and heterologous genes can be introduced to achieve the necessary enzymatic reactions. Dynamic regulation of metabolic flux is a powerful control scheme to alleviate and overcome the competing cellular objectives that arise from the introduction of these production pathways. This review explores dynamic regulation strategies that have demonstrated significant production benefits by targeting the metabolic node corresponding to a specific challenge. We summarize the stimulus-responsive control circuits employed in these strategies that determine the criterion for actuating a dynamic response and then examine the points of control that couple the stimulus-responsive circuit to a shift in metabolic flux.
引用
收藏
页码:519 / 541
页数:23
相关论文
共 147 条
[1]  
Alon U., 2020, An introduction to systems biology: design principles of biological circuits, V2nd ed
[2]  
Andersen JB, 1998, APPL ENVIRON MICROB, V64, P2240
[3]   Analysis and Design of a Genetic Circuit for Dynamic Metabolic Engineering [J].
Anesiadis, Nikolaos ;
Kobayashi, Hideki ;
Cluett, William R. ;
Mahadevan, Radhakrishnan .
ACS SYNTHETIC BIOLOGY, 2013, 2 (08) :442-452
[4]   Dynamic metabolic engineering for increasing bioprocess productivity [J].
Anesiadis, Nikolaos ;
Cluett, William R. ;
Mahadevan, Radhakrishnan .
METABOLIC ENGINEERING, 2008, 10 (05) :255-266
[5]   Dynamic Blue Light-Inducible T7 RNA Polymerases (Opto-T7RNAPs) for Precise Spatiotemporal Gene Expression Control [J].
Baumschlager, Armin ;
Aoki, Stephanie K. ;
Khammash, Mustafa .
ACS SYNTHETIC BIOLOGY, 2017, 6 (11) :2157-2167
[6]   Programmable ligand-controlled riboregulators of eukaryotic gene expression [J].
Bayer, TS ;
Smolke, CD .
NATURE BIOTECHNOLOGY, 2005, 23 (03) :337-343
[7]   A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level [J].
Binder, Stephan ;
Schendzielorz, Georg ;
Staebler, Norma ;
Krumbach, Karin ;
Hoffmann, Kristina ;
Bott, Michael ;
Eggeling, Lothar .
GENOME BIOLOGY, 2012, 13 (05)
[8]  
Borkowski O, 2017, HANDS FREE CONTROL H, DOI [10.1101/150375, DOI 10.1101/150375]
[9]   A Glucose-Sensing Toggle Switch for Autonomous, High Productivity Genetic Control [J].
Bothfeld, William ;
Kapov, Grace ;
Tyo, Keith E. J. .
ACS SYNTHETIC BIOLOGY, 2017, 6 (07) :1296-1304
[10]   Riboswitches and the RNA World [J].
Breaker, Ronald R. .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2012, 4 (02)