Carboxylated wood-based sponges with underoil superhydrophilicity for deep dehydration of crude oil

被引:77
作者
Wu, Ming-Bang [1 ]
Huang, Sheng [2 ]
Liu, Chang [1 ]
Wu, Jian [2 ]
Agarwal, Seema [3 ]
Greiner, Andreas [3 ]
Xu, Zhi-Kang [1 ,4 ]
机构
[1] Zhejiang Univ, Dept Polymer Sci & Engn, MOE Key Lab Macromol Synth & Functionalizat, Key Lab Adsorpt & Separat Mat & Technol Zhejiang, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China
[3] Univ Bayreuth, Macromol Chem & Bavarian Polymer Inst, Univ Str 30, D-95440 Bayreuth, Germany
[4] Zhejiang Univ, Coll Chem & Biochem Engn, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
CELLULOSE NANOCRYSTALS; CARBON AEROGELS; FAST CLEANUP; WASTE PAPER; WATER; SEPARATION; EMULSIONS; ASPHALTENE; SURFACES; ADSORPTION;
D O I
10.1039/d0ta03844j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Water cut crude oil needs to be deeply dehydrated before further transportation or refining because water residuals not only tremendously increase the transportation cost and energy consumption, but also harm the oil delivery pipelines and refining equipment. Herein, we report carboxylated wood-based sponges (CWS) with underoil super-hydrophilicity for removing water residuals from crude oil. These CWS are made of aligned cellulose nanofibers after the removal of lignin and hemicellulose from natural balsa wood. Removing lignin and hemicellulose breaks the thin cell walls of balsa wood, resulting in a lamellar structure in the freeze-dried CWS. This lamellar architecture endows the CWS with high mechanical compressibility and good elastic recovery. The CWS show fast and effective dehydration for crude oil with water residuals as low as 20 ppm. The absorbed crude oil can be easily recovered from the CWS by simple squeezing. Additionally, the CWS are not only reusable without performance decline during long-term operation, but also show good chemical stability even in strong acidic and basic environments. These results indicate that the CWS have great potential for deep dehydration of crude oil, especially for water-in-crude oil emulsions.
引用
收藏
页码:11354 / 11361
页数:8
相关论文
共 53 条
[1]   Asphaltene Adsorption, a Literature Review [J].
Adams, Jeramie J. .
ENERGY & FUELS, 2014, 28 (05) :2831-2856
[2]   Investigation on Asphaltene Deposition Mechanisms during CO2 Flooding Processes in Porous Media: A Novel Experimental Study and a Modified Model Based on Multilayer Theory for Asphaltene Adsorption [J].
Behbahani, Taraneh Jafari ;
Ghotbi, Cyrus ;
Taghikhani, Vahid ;
Shahrabadi, Abbas .
ENERGY & FUELS, 2012, 26 (08) :5080-5091
[3]   Solar-assisted fast cleanup of heavy oil spills using a photothermal sponge [J].
Chang, Jian ;
Shi, Yusuf ;
Wu, Mengchun ;
Li, Renyuan ;
Shi, Le ;
Jin, Yong ;
Qing, Weihua ;
Tang, Chuyang ;
Wang, Peng .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (19) :9192-9199
[4]   Scalable and Sustainable Approach toward Highly Compressible, Anisotropic, Lamellar Carbon Sponge [J].
Chen, Chaoji ;
Song, Jianwei ;
Zhu, Shuze ;
Li, Yiju ;
Kuang, Yudi ;
Wan, Jiayu ;
Kirsch, Dylan ;
Xu, Lisha ;
Wang, Yanbin ;
Gao, Tingting ;
Wang, Yilin ;
Huang, Hao ;
Gan, Wentao ;
Gong, Amy ;
Li, Teng ;
Xie, Jia ;
Hu, Liangbing .
CHEM, 2018, 4 (03) :544-554
[5]   Oil/water/rock wettability: Influencing factors and implications for low salinity water flooding in carbonate reservoirs [J].
Chen, Yongqiang ;
Xie, Quan ;
Sari, Ahmad ;
Brady, Patrick V. ;
Saeedi, Ali .
FUEL, 2018, 215 :171-177
[6]   Compressible, Elastic, and Pressure-Sensitive Carbon Aerogels Derived from 2D Titanium Carbide Nanosheets and Bacterial Cellulose for Wearable Sensors [J].
Chen, Zehong ;
Hu, Yijie ;
Zhuo, Hao ;
Liu, Linxiang ;
Jing, Shuangshuang ;
Zhong, Linxin ;
Peng, Xinwen ;
Sun, Run-cang .
CHEMISTRY OF MATERIALS, 2019, 31 (09) :3301-3312
[7]   Current characterization methods for cellulose nanomaterials [J].
Foster, E. Johan ;
Moon, Robert J. ;
Agarwal, Umesh P. ;
Bortner, Michael J. ;
Bras, Julien ;
Camarero-Espinosa, Sandra ;
Chan, Kathleen J. ;
Clift, Martin J. D. ;
Cranston, Emily D. ;
Eichhorn, Stephen J. ;
Fox, Douglas M. ;
Hamad, Wadood Y. ;
Heux, Laurent ;
Jean, Bruno ;
Korey, Matthew ;
Nieh, World ;
Ong, Kimberly J. ;
Reid, Michael S. ;
Renneckar, Scott ;
Roberts, Rose ;
Shatkin, Jo Anne ;
Simonsen, John ;
Stinson-Bagby, Kelly ;
Wanasekara, Nandula ;
Youngblood, Jeff .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (08) :2609-2679
[8]   Wood Nanotechnology for Strong, Mesoporous, and Hydrophobic Biocomposites for Selective Separation of Oil/Water Mixtures [J].
Fu, Qiliang ;
Ansari, Farhan ;
Zhou, Qi ;
Berglund, Lars A. .
ACS NANO, 2018, 12 (03) :2222-2230
[9]   Dense, Self-Formed Char Layer Enables a Fire-Retardant Wood Structural Material [J].
Gan, Wentao ;
Chen, Chaoji ;
Wang, Zhengyang ;
Song, Jianwei ;
Kuang, Yudi ;
He, Shuaiming ;
Mi, Ruiyu ;
Sunderland, Peter B. ;
Hu, Liangbing .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (14)
[10]   Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure [J].
Gao, Huai-Ling ;
Zhu, Yin-Bo ;
Mao, Li-Bo ;
Wang, Feng-Chao ;
Luo, Xi-Sheng ;
Liu, Yang-Yi ;
Lu, Yang ;
Pan, Zhao ;
Ge, Jin ;
Shen, Wei ;
Zheng, Ya-Rong ;
Xu, Liang ;
Wang, Lin-Jun ;
Xu, Wei-Hong ;
Wu, Heng-An ;
Yu, Shu-Hong .
NATURE COMMUNICATIONS, 2016, 7