Solving the strength-ductility tradeoff in the medium-entropy NiCoCr alloy via interstitial strengthening of carbon

被引:90
|
作者
Shang, Y. Y. [1 ]
Wu, Y. [1 ]
He, J. Y. [2 ]
Zhu, X. Y. [1 ]
Liu, S. F. [1 ]
Huang, H. L. [1 ]
An, K. [3 ]
Chen, Y. [3 ]
Jiang, S. H. [1 ]
Wang, H. [1 ]
Liu, X. J. [1 ]
Lu, Z. P. [1 ]
机构
[1] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
[2] Max Planck Inst Eisenforsch GmbH, Dept Microstruct Phys & Alloy Design, Max Planck Str 1, D-40237 Dusseldorf, Germany
[3] Oak Ridge Natl Lab, Chem & Engn Mat Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA
基金
中国国家自然科学基金;
关键词
Medium-entropy and high-entropy alloys; Interstitial strengthening; Stacking fault energy; Mechanical properties; Neutron diffraction; STACKING-FAULT ENERGY; DISLOCATION SUBSTRUCTURE; MECHANICAL-PROPERTIES; NEUTRON-DIFFRACTION; TENSILE DEFORMATION; INDUCED PLASTICITY; EVOLUTION; NI; MICROSTRUCTURE; STRESS;
D O I
10.1016/j.intermet.2018.12.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Interstitial solid strengthening is an effective strategy to harden metallic materials, however, it usually deteriorates the ductility. Here, we report that addition of carbon into the medium-entropy NiCoCr alloy successfully enhances the strength at no expense of ductility. It was found that up to 0.75 at.% carbon was completely solid-solutionized in (NiCoCr)(100-x)C-x (x = 0, 0.10, 0.25, 0.50 and 0.75 at.%) without formation of any carbides. With the increase of carbon content from 0 to 0.75 at.%, the yield and fracture strength were increased from 242 to 347 MPa to 727 and 862 MPa, respectively, whilst the ductility kept as high as about 75%. It is noteworthy that the integral of the stress over strain for the alloy with 0.75 at.% carbon reaches a value of 59 GPa %, surmounting the level of many reported multi-principal elements alloys. Our analysis indicates that carbon addition increases stacking fault energy, thus delaying occurrence of twinning and decreasing the thickness of twin lamellas. At the early deformation stage, carbon decreases the stress localization and stimulates dislocation multiplication. After occurrence of deformation twinning, finer twinning structure in the alloys added with carbon not only can obstacle and trigger more dislocations, but also transfer plastic deformation more efficiently, thus promoting the twinning process, postponing the plastic instability and eventually giving rise to a more pronounced work-hardening. Our results not only have important implications for understanding the solid solution strengthening mechanism in medium-entropy alloys, but also shed lights on developing advanced metallic alloys with a unique combination of strength and ductility.
引用
收藏
页码:77 / 87
页数:11
相关论文
共 50 条
  • [1] Achieving excellent strength-ductility synergy in twinned NiCoCr medium-entropy alloy via Al/Ta co-doping
    D.D.Zhang
    H.Wang
    J.Y.Zhang
    H.Xue
    G.Liu
    J.Sun
    Journal of Materials Science & Technology, 2021, 87 (28) : 184 - 195
  • [2] Achieving excellent strength-ductility synergy in twinned NiCoCr medium-entropy alloy via Al/Ta co-doping
    Zhang, D. D.
    Wang, H.
    Zhang, J. Y.
    Xue, H.
    Liu, G.
    Sun, J.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 87 : 184 - 195
  • [3] On the formation of hierarchical microstructure in a Mo-doped NiCoCr medium-entropy alloy with enhanced strength-ductility synergy
    He, Junyang
    Makineni, Surendra Kumar
    Lu, Wenjun
    Shang, Yuanyuan
    Lu, Zhaoping
    Li, Zhiming
    Gault, Baptiste
    SCRIPTA MATERIALIA, 2020, 175 : 1 - 6
  • [4] Superior strength-ductility CoCrNi medium-entropy alloy wire
    Liu, Jun-Peng
    Chen, Jin-Xi
    Liu, Tian-Wei
    Li, Chen
    Chen, Yan
    Dai, Lan-Hong
    SCRIPTA MATERIALIA, 2020, 181 : 19 - 24
  • [5] Achieving a strength-ductility combination in VCoNi medium-entropy alloy via N alloying
    Yu, Fengshan
    Xu, Dingfeng
    Wang, Mingliang
    Li, Lei
    Lu, Yiping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 963
  • [6] Gradient nanotwinned CrCoNi medium-entropy alloy with strength-ductility synergy
    Yuan, Shuqing
    Gan, Bin
    Qian, Lei
    Wu, Bo
    Fu, Hui
    Wu, Hong-Hui
    Cheung, Chi Fai
    Yang, Xu-Sheng
    SCRIPTA MATERIALIA, 2021, 203
  • [7] In-situ tailoring microstructures to promote strength-ductility synergy in laser powder bed fusion of NiCoCr medium-entropy alloy
    Zhou, Kexuan
    Cui, Dingcong
    Chai, Zishu
    Zhang, Yashan
    Yang, Zhongsheng
    Zhu, Chao
    Wang, Zhijun
    Li, Junjie
    Wang, Jincheng
    ADDITIVE MANUFACTURING, 2023, 66
  • [8] Superb strength-ductility synergy in a medium-entropy CoCrNi alloy via reinforced TRIP effect
    Shi, C. X.
    Du, X. H.
    Zhang, J. Y.
    Duan, G. S.
    Yang, M. C.
    Zu, R. F.
    Li, W. P.
    Chou, T. H.
    Wu, B. L.
    Sun, J.
    Huang, J. C.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 20 : 104 - 113
  • [9] Interstitial doping enhances the strength-ductility synergy in a CoCrNi medium entropy alloy
    Moravcik, Igor
    Hornik, Vit
    Minarik, Peter
    Li, Linlin
    Dlouhy, Ivo
    Janovska, Michaela
    Raabe, Dierk
    Li, Zhiming
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 781
  • [10] Enhanced Strength-Ductility Combination in Laser Welding of CrCoNi Medium-Entropy Alloy with Ultrasonic Assistance
    Zhou, Hongmei
    Yan, Shaohua
    Zhu, Zhongyin
    METALS, 2024, 14 (09)