Holder continuous homomorphisms between infinite-dimensional Lie groups are smooth

被引:4
作者
Glöckner, H [1 ]
机构
[1] TU Darmstadt, FB Math AG 5, D-64289 Darmstadt, Germany
关键词
infinite-dimensional Lie group; homomorphism; Holder continuity; Lipschitz continuity; Taylor expansion; differentiability; smoothness; power map;
D O I
10.1016/j.jfa.2005.06.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f : G -> H be a homomorphism between smooth Lie groups modelled on Mackey complete, locally convex real topological vector spaces. We show that if f is Holder continuous at 1, then f is smooth. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:419 / 444
页数:26
相关论文
共 21 条
[1]  
AVERBUKH VI, 1968, RUSS MATH SURV, V23, P67
[2]   Differential calculus over general base fields and rings [J].
Bertram, W ;
Glöckner, H ;
Neeb, KH .
EXPOSITIONES MATHEMATICAE, 2004, 22 (03) :213-282
[3]  
ENGELKING R, 1989, GENERAL TOPOLOGY
[4]   Conveniently Holder homomorphisms are smooth in the convenient sense [J].
Glöckner, H .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2005, 27 (03) :227-255
[5]   Smooth Lie groups over local fields of positive characteristic need not be analytic [J].
Glöckner, H .
JOURNAL OF ALGEBRA, 2005, 285 (01) :356-371
[6]  
Glöckner H, 2003, J REINE ANGEW MATH, V560, P1
[7]  
GLOCKNER H, IN PRESS COMPOSITIO
[8]  
GLOCKNER H, IN PRESS INFINITE DI, V1
[9]  
GLOCKNER H, 2002, GEOMETRY ANAL FINITE, V55, P43
[10]  
GLOCKNER H, IN PRESS 24 WORKSH G