Fractional-order modeling and parameter identification for lithium-ion batteries

被引:181
|
作者
Wang, Baojin [1 ,2 ]
Li, Shengbo Eben [2 ,3 ]
Peng, Huei [2 ]
Liu, Zhiyuan [1 ]
机构
[1] Harbin Inst Technol, Dept Control Sci & Engn, Harbin 150001, Peoples R China
[2] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[3] Tsinghua Univ, Dept Automot Engn, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
关键词
Lithium-ion batteries; Fractional-order model; Differentiation order identification; Electrochemical impedance spectroscopy; Hybrid multi-swarm particle swarm optimization; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; EQUIVALENT-CIRCUIT MODELS; SINGLE-PARTICLE MODEL; CHARGE; DISCHARGE; TIME; MANAGEMENT; EXTENSION; STATE;
D O I
10.1016/j.jpowsour.2015.05.059
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents a fractional-order model (FOM) for lithium-ion batteries and its parameter identification using time-domain test data. The FOM is derived from a modified Randles model and takes the form of an equivalent circuit model with free non-integer differentiation orders. The coefficients and differentiation orders of the FOM are identified by hybrid multi-swarm particle swarm optimization. The influence of approximation degree on model accuracy is discussed. Battery datasets under a range of conditions are used to analyze model performance. The accuracy and robustness of the FOM are benchmarked against the commonly used first-order RC equivalent circuit model. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:151 / 161
页数:11
相关论文
共 50 条
  • [31] Lithium-ion batteries modeling involving fractional differentiation
    Sabatier, Jocelyn
    Merveillaut, Mathieu
    Francisco, Mbala, Jr.
    Guillemard, Franck
    Porcelatto, Denis
    JOURNAL OF POWER SOURCES, 2014, 262 : 36 - 43
  • [32] Fractional-order modeling and SOC estimation of lithium-ion battery considering capacity loss
    Li, Shuxian
    Hu, Minghui
    Li, Yunxiao
    Gong, Changchao
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (01) : 417 - 429
  • [33] Lithium-Ion Battery Modeling and State of Charge Prediction Based on Fractional-Order Calculus
    Zhang, Xinfeng
    Li, Xiangjun
    Yang, Kaikai
    Wang, Zhongyi
    MATHEMATICS, 2023, 11 (15)
  • [34] A Fractional-Order Electro-Thermal Aging Model for Lifetime Enhancement of Lithium-ion Batteries
    Mohajer, Sara
    Sabatier, Jocelyn
    Lanusse, Patrick
    Cois, Olivier
    IFAC PAPERSONLINE, 2018, 51 (02): : 220 - 225
  • [35] Adaptive state of charge estimation for lithium-ion batteries based on implementable fractional-order technology
    Li, Shizhong
    Li, Yan
    Zhao, Daduan
    Zhang, Chenghui
    JOURNAL OF ENERGY STORAGE, 2020, 32
  • [36] Parameter identification and identifiability analysis of lithium-ion batteries
    Choi, Yun Young
    Kim, Seongyoon
    Kim, Kyunghyun
    Kim, Sanghyun
    Choi, Jung-Il
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (02) : 488 - 506
  • [37] State-of-charge estimation for lithium-ion batteries based on incommensurate fractional-order observer
    Chen, Liping
    Guo, Wenliang
    Lopes, Antonio M.
    Wu, Ranchao
    Li, Penghua
    Yin, Lisheng
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 118
  • [38] Estimation for state of charge of lithium-ion batteries by adaptive fractional-order unscented Kalman filters
    Miao, Yue
    Gao, Zhe
    JOURNAL OF ENERGY STORAGE, 2022, 51
  • [39] Online Parameter Estimation for Lithium-Ion Battery by Using Adaptive Observer for Fractional-Order System
    Takamatsu, Takahiro
    Ohmori, Hiromitsu
    ELECTRONICS AND COMMUNICATIONS IN JAPAN, 2018, 101 (03) : 80 - 89
  • [40] State-of-Charge and State-of-Health Estimation for Lithium-Ion Batteries Based on Dual Fractional-Order Extended Kalman Filter and Online Parameter Identification
    Ling, Liuyi
    Wei, Ying
    IEEE ACCESS, 2021, 9 : 47588 - 47602