Fractional-order modeling and parameter identification for lithium-ion batteries

被引:181
|
作者
Wang, Baojin [1 ,2 ]
Li, Shengbo Eben [2 ,3 ]
Peng, Huei [2 ]
Liu, Zhiyuan [1 ]
机构
[1] Harbin Inst Technol, Dept Control Sci & Engn, Harbin 150001, Peoples R China
[2] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[3] Tsinghua Univ, Dept Automot Engn, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
关键词
Lithium-ion batteries; Fractional-order model; Differentiation order identification; Electrochemical impedance spectroscopy; Hybrid multi-swarm particle swarm optimization; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; EQUIVALENT-CIRCUIT MODELS; SINGLE-PARTICLE MODEL; CHARGE; DISCHARGE; TIME; MANAGEMENT; EXTENSION; STATE;
D O I
10.1016/j.jpowsour.2015.05.059
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents a fractional-order model (FOM) for lithium-ion batteries and its parameter identification using time-domain test data. The FOM is derived from a modified Randles model and takes the form of an equivalent circuit model with free non-integer differentiation orders. The coefficients and differentiation orders of the FOM are identified by hybrid multi-swarm particle swarm optimization. The influence of approximation degree on model accuracy is discussed. Battery datasets under a range of conditions are used to analyze model performance. The accuracy and robustness of the FOM are benchmarked against the commonly used first-order RC equivalent circuit model. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:151 / 161
页数:11
相关论文
共 50 条
  • [21] Parameter and Order Identification of Fractional Systems with Application to a Lithium-Ion Battery
    Stark, Oliver
    Pfeifer, Martin
    Hohmann, Soeren
    MATHEMATICS, 2021, 9 (14)
  • [22] Lithium-ion battery modeling and parameter identification based on fractional theory
    Hu, Minghui
    Li, Yunxiao
    Li, Shuxian
    Fu, Chunyun
    Qin, Datong
    Li, Zonghua
    ENERGY, 2018, 165 : 153 - 163
  • [23] Subspace-based modeling and parameter identification of lithium-ion batteries
    Li, Yong
    Liao, Chenglin
    Wang, Lifang
    Wang, Liye
    Xu, Dongping
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2014, 38 (08) : 1024 - 1038
  • [24] A Fractional-Order Kinetic Battery Model of Lithium-Ion Batteries Considering a Nonlinear Capacity
    Zhang, Qi
    Li, Yan
    Shang, Yunlong
    Duan, Bin
    Cui, Naxin
    Zhang, Chenghui
    ELECTRONICS, 2019, 8 (04):
  • [25] A Parameter Identification Method for Lithium-Ion Batteries Using Simplified Impedance Model and Fractional Order Kalman Filter
    Liu, Zheng
    Qiu, Yuan
    Yang, Chunshan
    Feng, Jin
    Jing, Benqin
    Journal of Electrical Engineering and Technology, 2022, 17 (01): : 197 - 208
  • [26] A Parameter Identification Method for Lithium-Ion Batteries Using Simplified Impedance Model and Fractional Order Kalman Filter
    Liu, Zheng
    Qiu, Yuan
    Yang, Chunshan
    Feng, Jin
    Jing, Benqin
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (01) : 197 - 208
  • [27] A Simplified Fractional Order Equivalent Circuit Model and Adaptive Online Parameter Identification Method for Lithium-Ion Batteries
    Wang, Jianlin
    Zhang, Le
    Xu, Dan
    Zhang, Peng
    Zhang, Gairu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [28] A Parameter Identification Method for Lithium-Ion Batteries Using Simplified Impedance Model and Fractional Order Kalman Filter
    Zheng Liu
    Yuan Qiu
    Chunshan Yang
    Jin Feng
    Benqin Jing
    Journal of Electrical Engineering & Technology, 2022, 17 : 197 - 208
  • [29] A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors
    Zou, Changfu
    Zhang, Lei
    Hu, Xiaosong
    Wang, Zhenpo
    Wik, Torsten
    Pecht, Michael
    JOURNAL OF POWER SOURCES, 2018, 390 : 286 - 296
  • [30] Fractional Order Modeling of Lithium-ion Batteries For A Real Smart Grid System
    Gharab, Saddam
    Achnib, Asma
    Lanusse, Patrick
    Batik, Vicente Feliu
    IFAC PAPERSONLINE, 2024, 58 (12): : 478 - 483