Fractional-order modeling and parameter identification for lithium-ion batteries

被引:181
作者
Wang, Baojin [1 ,2 ]
Li, Shengbo Eben [2 ,3 ]
Peng, Huei [2 ]
Liu, Zhiyuan [1 ]
机构
[1] Harbin Inst Technol, Dept Control Sci & Engn, Harbin 150001, Peoples R China
[2] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[3] Tsinghua Univ, Dept Automot Engn, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
关键词
Lithium-ion batteries; Fractional-order model; Differentiation order identification; Electrochemical impedance spectroscopy; Hybrid multi-swarm particle swarm optimization; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; EQUIVALENT-CIRCUIT MODELS; SINGLE-PARTICLE MODEL; CHARGE; DISCHARGE; TIME; MANAGEMENT; EXTENSION; STATE;
D O I
10.1016/j.jpowsour.2015.05.059
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents a fractional-order model (FOM) for lithium-ion batteries and its parameter identification using time-domain test data. The FOM is derived from a modified Randles model and takes the form of an equivalent circuit model with free non-integer differentiation orders. The coefficients and differentiation orders of the FOM are identified by hybrid multi-swarm particle swarm optimization. The influence of approximation degree on model accuracy is discussed. Battery datasets under a range of conditions are used to analyze model performance. The accuracy and robustness of the FOM are benchmarked against the commonly used first-order RC equivalent circuit model. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:151 / 161
页数:11
相关论文
共 40 条
  • [21] Impedance as a tool for investigating aging in lithium-ion porous electrodes
    Mellgren, Niklas
    Brown, Shelley
    Vynnycky, Michael
    Lindbergh, Goeran
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (04) : A304 - A319
  • [22] Parameter estimation of bilinear systems based on an adaptive particle swarm optimization
    Modares, Hamidreza
    Alfi, Alireza
    Sistani, Mohammad-Bagher Naghibi
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2010, 23 (07) : 1105 - 1111
  • [23] Continuous-time model identification of fractional-order models with time delays
    Narang, A.
    Shah, S. L.
    Chen, T.
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2011, 5 (07) : 900 - 912
  • [24] The CRONE suspension
    Oustaloup, A
    Moreau, X
    Nouillant, M
    [J]. CONTROL ENGINEERING PRACTICE, 1996, 4 (08) : 1101 - 1108
  • [25] Petrás I, 2011, NONLINEAR PHYS SCI, P43
  • [26] Optimizing neural networks for river flow forecasting - Evolutionary Computation methods versus the Levenberg-Marquardt approach
    Piotrowski, Adam P.
    Napiorkowski, Jaroslaw J.
    [J]. JOURNAL OF HYDROLOGY, 2011, 407 (1-4) : 12 - 27
  • [27] Podlubny I., 1999, MATH SCI ENG
  • [28] FRACTIONAL ORDER OPTIMAL CONTROL PROBLEMS WITH FREE TERMINAL TIME
    Pooseh, Shakoor
    Almeida, Ricardo
    Torres, Delfim F. M.
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2014, 10 (02) : 363 - 381
  • [29] Extension of physics-based single particle model for higher charge-discharge rates
    Rahimian, Saeed Khaleghi
    Rayman, Sean
    White, Ralph E.
    [J]. JOURNAL OF POWER SOURCES, 2013, 224 : 180 - 194
  • [30] Comparison of single particle and equivalent circuit analog models for a lithium-ion cell
    Rahimian, Saeed Khaleghi
    Rayman, Sean
    White, Ralph E.
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (20) : 8450 - 8462