Quantum phase slips in one-dimensional superfluids in a periodic potential

被引:25
作者
Danshita, Ippei [1 ]
Polkovnikov, Anatoli [2 ]
机构
[1] RIKEN, Computat Condensed Matter Phys Lab, Wako, Saitama 3510198, Japan
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
FALSE VACUUM; BOSONS; SUPERCONDUCTIVITY; SUPPRESSION; INSTABILITY; TRANSITION; TRANSPORT; DECAY; MODEL; FATE;
D O I
10.1103/PhysRevA.85.023638
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the decay of superflow of a one-dimensional (1D) superfluid in the presence of a periodic potential. In 1D, superflow at zero temperature can decay via quantum nucleation of phase slips even when the flow velocity is much smaller than the critical velocity predicted by mean-field theories. Applying the instanton method to the O(2) quantum rotor model, we calculate the nucleation rate of quantum phase slips Gamma. When the flow momentum p is small, we find that the nucleation rate per unit length increases algebraically with p as Gamma/L proportional to p(2K-2), where L is the system size and K is the Tomonaga-Luttinger parameter. Based on the relation between the nucleation rate and the quantum superfluid-insulator transition, we present a unified explanation on the scaling formulas of the nucleation rate for periodic, disorder, and single-barrier potentials. Using the time-evolving block decimation method, we compute the exact quantum dynamics of the superflow decay in the 1D Bose-Hubbard model at unit filling. From the numerical analyses, we show that the scaling formula is valid for the case of the Bose-Hubbard model, which can quantitatively describe Bose gases in optical lattices.
引用
收藏
页数:10
相关论文
共 61 条
[1]   Evidence for macroscopic quantum tunneling of phase slips in long one-dimensional superconducting Al wires [J].
Altomare, Fabio ;
Chang, A. M. ;
Melloch, Michael R. ;
Hong, Yuguang ;
Tu, Charles W. .
PHYSICAL REVIEW LETTERS, 2006, 97 (01)
[2]  
[Anonymous], SUPERFLUIDITY
[3]  
[Anonymous], ARXIV11012659V1
[4]  
[Anonymous], ARXIV11066329V2
[5]   Superconductivity in one dimension [J].
Arutyunov, K. Yu. ;
Golubev, D. S. ;
Zaikin, A. D. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 464 (1-2) :1-70
[6]   Quantum suppression of superconductivity in ultrathin nanowires [J].
Bezryadin, A ;
Lau, CN ;
Tinkham, M .
NATURE, 2000, 404 (6781) :971-974
[7]   Superfluidity versus Bloch oscillations in confined atomic gases -: art. no. 100403 [J].
Büchler, HP ;
Geshkenbein, VB ;
Blatter, G .
PHYSICAL REVIEW LETTERS, 2001, 87 (10) :1-100403
[8]   FATE OF FALSE VACUUM .2. 1ST QUANTUM CORRECTIONS [J].
CALLAN, CG ;
COLEMAN, S .
PHYSICAL REVIEW D, 1977, 16 (06) :1762-1768
[9]   One dimensional bosons: From condensed matter systems to ultracold gases [J].
Cazalilla, M. A. ;
Citro, R. ;
Giamarchi, T. ;
Orignac, E. ;
Rigol, M. .
REVIEWS OF MODERN PHYSICS, 2011, 83 (04) :1405-1466
[10]   FATE OF FALSE VACUUM - SEMICLASSICAL THEORY [J].
COLEMAN, S .
PHYSICAL REVIEW D, 1977, 15 (10) :2929-2936