Optimization of Multi-Phase Compressible Lattice Boltzmann Codes on Massively Parallel Multi-Core Systems

被引:16
作者
Biferale, Luca [1 ]
Mantovani, Filippo [2 ]
Pivanti, Marcello [3 ]
Pozzati, Fabio [3 ]
Sbragaglia, Mauro [1 ]
Scagliarini, Andrea [1 ]
Schifano, Sebastiano Fabio [3 ]
Toschi, Federico [4 ]
Tripiccione, Raffaele [3 ]
机构
[1] Univ Roma Tor Vergata, Rome, Italy
[2] Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany
[3] Univ INFNn, I-44124 Ferrara, Italy
[4] Tech Univ Eindhoven, CNRS IAC, I-00185 Rome, Italy
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS) | 2011年 / 4卷
关键词
Computational fluid-dynamics; Lattice Boltzmann methods; multi-core processors; PERFORMANCE;
D O I
10.1016/j.procs.2011.04.105
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
develop a Lattice Boltzmann code for computational fluid-dynamics and optimize it for massively parallel systems based on multi-core processors. Our code describes 2D multi-phase compressible flows. We analyze the performance bottlenecks that we find as we gradually expose a larger fraction of the available parallelism, and derive appropriate solutions. We obtain a sustained performance for this ready-for-physics code that is a large fraction of peak. Our results can be easily applied to most present (or planned) HPC architectures, based on latest generation multi-core Intel processor architectures.
引用
收藏
页码:994 / 1003
页数:10
相关论文
共 13 条
[1]   Performance evaluation of a parallel sparse lattice Boltzmann solver [J].
Axner, L. ;
Bernsdorf, J. ;
Zeiser, T. ;
Lammers, P. ;
Linxweiler, J. ;
Hoekstra, A. G. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (10) :4895-4911
[2]   QPACE: power-efficient parallel architecture based on IBM PowerXCell 8i [J].
Baier, H. ;
Boettiger, H. ;
Drochner, M. ;
Eicker, N. ;
Fischer, U. ;
Fodor, Z. ;
Frommer, A. ;
Gomez, C. ;
Goldrian, G. ;
Heybrock, S. ;
Hierl, D. ;
Huesken, M. ;
Huth, T. ;
Krill, B. ;
Lauritsen, J. ;
Lippert, T. ;
Maurer, T. ;
Mendl, B. ;
Meyer, N. ;
Nobile, A. ;
Ouda, I. ;
Pivanti, M. ;
Pleiter, D. ;
Ries, M. ;
Schaefer, A. ;
Schick, H. ;
Schifano, F. ;
Simma, H. ;
Solbrig, S. ;
Streuer, T. ;
Sulanke, K. -H. ;
Tripiccione, R. ;
Vogt, J. -S. ;
Wettig, T. ;
Winter, F. .
COMPUTER SCIENCE-RESEARCH AND DEVELOPMENT, 2010, 25 (3-4) :149-154
[3]  
Baier H., 2008, COMPUTING SCI ENG, V10, p[46, 54]
[4]   High resolution numerical study of Rayleigh-Taylor turbulence using a thermal lattice Boltzmann scheme [J].
Biferale, L. ;
Mantovani, F. ;
Sbragaglia, M. ;
Scagliarini, A. ;
Toschi, F. ;
Tripiccione, R. .
PHYSICS OF FLUIDS, 2010, 22 (11)
[5]   Overview of the QCDSP and QCDOC computers [J].
Boyle, PA ;
Chen, D ;
Christ, NH ;
Clark, MA ;
Cohen, SD ;
Cristian, C ;
Dong, Z ;
Gara, A ;
Joó, B ;
Jung, C ;
Kim, C ;
Levkova, LA ;
Liao, X ;
Liu, G ;
Mawhinney, RD ;
Ohta, S ;
Petrov, K ;
Wettig, T ;
Yamaguchi, A .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2005, 49 (2-3) :351-365
[6]  
Pivanti M., P SCI POS LATT 2010, P038
[7]  
Pohl T., 2003, PARALLEL PROCESSING, V13, P549, DOI [DOI 10.1142/S0129626403001501, 10.1142/s0129626403001501]
[8]   Lattice Boltzmann method with self-consistent thermo-hydrodynamic equilibria [J].
Sbragaglia, M. ;
Benzi, R. ;
Biferale, L. ;
Chen, H. ;
Shan, X. ;
Succi, S. .
JOURNAL OF FLUID MECHANICS, 2009, 628 :299-309
[9]   Lattice Boltzmann methods for thermal flows: Continuum limit and applications to compressible Rayleigh-Taylor systems [J].
Scagliarini, A. ;
Biferale, L. ;
Sbragaglia, M. ;
Sugiyama, K. ;
Toschi, F. .
PHYSICS OF FLUIDS, 2010, 22 (05) :1-21
[10]  
Scorzato L., P SCI POS LATT 2010