The Schwarz problem in multiply connected domains and the Schottky-Klein prime function

被引:27
作者
Crowdy, Darren [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Schwarz problem; Schottky-Klein prime function; Multiply connected;
D O I
10.1080/17476930701682897
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article presents concise integral formulae for the solution of the Schwarz problem (and modified Schwarz problem) in multiply connected circular planar domains. The form of the solution is novel in that the kernels appearing in the integral formula are expressed in terms of the Schottky-Klein prime function on the Schottky double of the multiply connected domain. The well-known Poisson integral formula and Villat formula are retrieved as special cases.
引用
收藏
页码:221 / 236
页数:16
相关论文
共 28 条
[1]  
ABLOWITZ M, 1992, COMPLEX VARIABLES AP
[2]  
AKHIEZER N. I., 1990, TRANSLATIONS MATH MO, V79
[3]  
AKSENTEV LA, 1967, T SEM KRAEV ZAD, V4, P3
[4]  
ALEKSANDROV IA, 1972, SIB MAT ZH, V13, P971
[5]  
[Anonymous], 2000, CONSTRUCTIVE METHODS
[6]  
[Anonymous], 1995, ABELIAN FUNCTIONS AB
[7]  
[Anonymous], 1972, MEMOIRS AM MATH SOC
[8]   A method of images for the evaluation of electrostatic fields in systems of closely spaced conducting cylinders [J].
Cheng, HW ;
Greengard, L .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 58 (01) :122-141
[9]   A KERNEL ASSOCIATED WITH CERTAIN MULTIPLY CONNECTED DOMAINS AND ITS APPLICATIONS TO FACTORIZATION THEOREMS [J].
COIFMAN, R ;
WEISS, G .
STUDIA MATHEMATICA, 1966, 28 (01) :31-&
[10]   The Schwarz-Christoffel mapping to bounded multiply connected polygonal domains [J].
Crowdy, D .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2061) :2653-2678