Deep Learning in Remote Sensing

被引:9
|
作者
Zhu, Xiao Xiang [1 ,2 ,3 ,4 ,5 ,6 ]
Tuia, Devis [7 ,8 ,9 ,10 ,11 ]
Mou, Lichao [2 ,6 ,12 ]
Xia, Gui-Song [13 ,14 ]
Zhang, Liangpei [15 ]
Xu, Feng [16 ,17 ]
Fraundorfer, Friedrich [18 ,19 ,20 ,21 ,22 ]
机构
[1] TUM, Signal Proc Earth Observat, Munich, Germany
[2] German Aerosp Ctr DLR, Cologne, Germany
[3] DLR, Remote Sensing Technol Inst, Team Signal Anal, Cologne, Germany
[4] Helmholtz Young Investigator Grp SiPEO, Munich, Germany
[5] DLR, Cologne, Germany
[6] TUM, Munich, Germany
[7] Univ Valencia, Valencia, Spain
[8] Univ Colorado, Boulder, CO 80309 USA
[9] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[10] Wageningen Univ, GeoInformat Sci & Remote Sensing Lab, Wageningen, Netherlands
[11] Univ Zurich, Zurich, Switzerland
[12] Univ Freiburg, Comp Vis Grp, Freiburg, Germany
[13] Wuhan Univ, Key Lab Informat Engn Surveying Mapping & Remote, Wuhan, Hubei, Peoples R China
[14] Paris Dauphine Univ, CNRS, Ctr Rech Math Decis, Paris, France
[15] Wuhan Univ, Wuhan, Hubei, Peoples R China
[16] Sch Informat Sci & Technol, Hefei, Anhui, Peoples R China
[17] Key Lab for Informat Sci Electromagnet Waves, Shanghai, Peoples R China
[18] Graz Univ Technol, Graz, Austria
[19] Univ Kentucky, Lexington, KY 40506 USA
[20] Univ N Carolina, Chapel Hill, NC USA
[21] Swiss Fed Inst Technol, Zurich, Switzerland
[22] Tech Univ Munich, Fac Civil Geo & Environm Engn, Munich, Germany
基金
中国国家自然科学基金; 欧洲研究理事会; 瑞士国家科学基金会;
关键词
CONVOLUTIONAL NEURAL-NETWORK; OBJECT DETECTION; HIGH-RESOLUTION; DATA-FUSION; SCENE CLASSIFICATION; VEHICLE DETECTION; IMAGE RETRIEVAL; SAR ATR; REPRESENTATION; FEATURES;
D O I
10.1109/MGRS.2017.2762307
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
引用
收藏
页码:8 / 36
页数:29
相关论文
共 50 条
  • [31] Spatiotemporal Fusion of Remote Sensing Image Based on Deep Learning
    Wang, Xiaofei
    Wang, Xiaoyi
    JOURNAL OF SENSORS, 2020, 2020
  • [32] Special focus on deep learning in remote sensing image processing
    Feng Xu
    Cheng Hu
    Jun Li
    Antonio Plaza
    Mihai Datcu
    Science China Information Sciences, 2020, 63
  • [33] Survey of remote sensing image registration based on deep learning
    Li X.
    Ai W.
    Feng R.
    Luo S.
    National Remote Sensing Bulletin, 2023, 27 (02) : 5 - 22
  • [34] The design of deep learning framework and model for intelligent remote sensing
    Gong J.
    Zhang M.
    Hu X.
    Zhang Z.
    Li Y.
    Jiang L.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (04): : 475 - 487
  • [35] A Deep Learning Hierarchical Ensemble for Remote Sensing Image Classification
    Hwang, Seung-Yeon
    Kim, Jeong-Joon
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (02): : 2649 - 2663
  • [36] Research on remote sensing image extraction based on deep learning
    Shun Z.
    Li D.
    Jiang H.
    Li J.
    Peng R.
    Lin B.
    Liu Q.
    Gong X.
    Zheng X.
    Liu T.
    PeerJ Computer Science, 2022, 8
  • [37] Classification of tobacco using remote sensing and deep learning techniques
    Qazi, Umama Khalid
    Ahmad, Iftikhar
    Minallah, Nasru
    Zeeshan, Muhammad
    AGRONOMY JOURNAL, 2024, 116 (03) : 839 - 847
  • [38] Deep Learning in Damage Assessment with Remote Sensing Data: A Review
    Irwansyah, Edy
    Gunawan, Alexander Agung Santoso
    DATA SCIENCE AND ALGORITHMS IN SYSTEMS, 2022, VOL 2, 2023, 597 : 728 - 739
  • [39] Introduction to the special issue on deep learning for remote sensing environments
    Manogaran, Gunasekaran
    Qudrat-Ullah, Hassan
    Rawal Kshatriya, Bharat S.
    EUROPEAN JOURNAL OF REMOTE SENSING, 2020, 53 (sup1) : 1 - 3
  • [40] Special focus on deep learning in remote sensing image processing
    Xu, Feng
    Hu, Cheng
    Li, Jun
    Plaza, Antonio
    Datcu, Mihai
    SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (04)