Numerical Simulations of a Polydisperse Sedimentation Model by Using Spectral WENO Method with Adaptive Multiresolution

被引:0
作者
Vega, Carlos A. [1 ]
Arias, Francisco [2 ]
机构
[1] Univ Norte, Dept Matemat & Estadist, Barranquilla, Colombia
[2] Univ Tecnol Bolivar, Cartagena De Indias, Colombia
关键词
Spectral-based WENO; SSPRK methods; adaptive multiresolution; Hofler and Schwarzer model; ESSENTIALLY NONOSCILLATORY SCHEMES; KINEMATIC FLOW MODELS; SECULAR EQUATION; INTERACTING SPHERES; IMPLEMENTATION; MATRIX; SYSTEM;
D O I
10.1142/S0219876216500377
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we apply adaptive multiresolution (Harten's approach) characteristic-wise fifth-order Weighted Essentially Non-Oscillatory (WENO) for computing the numerical solution of a polydisperse sedimentation model, namely, the Hofler and Schwarzer model. In comparison to other related works, time discretization is carried out with the ten-stage fourth-order strong stability preserving Runge-Kutta method which is more efficient than the widely used optimal third-order TVD Runge-Kutta method. Numerical results with errors, convergence rates and CPU times are included for four and 11 species.
引用
收藏
页数:17
相关论文
共 22 条
[1]   A secular equation for the eigenvalues of a diagonal matrix perturbation [J].
Anderson, J .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 246 :49-70
[2]   SEDIMENTATION IN A DILUTE POLYDISPERSE SYSTEM OF INTERACTING SPHERES .2. NUMERICAL RESULTS [J].
BATCHELOR, GK ;
WEN, CS .
JOURNAL OF FLUID MECHANICS, 1982, 124 (NOV) :495-528
[4]   Spectral WENO schemes with Adaptive Mesh Refinement for models of polydisperse sedimentation [J].
Buerger, Raimund ;
Mulet, Pep ;
Miguel Villada, Luis .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2013, 93 (6-7) :373-386
[5]   On the implementation of WENO schemes for a class of polydisperse sedimentation models [J].
Buerger, Raimund ;
Donat, Rosa ;
Mulet, Pep ;
Vega, Carlos A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (06) :2322-2344
[6]   Adaptive multiresolution WENO schemes for multi-species kinematic flow models [J].
Burger, Raimund ;
Kozakevicius, Alice .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 224 (02) :1190-1222
[7]   HYPERBOLICITY ANALYSIS OF POLYDISPERSE SEDIMENTATION MODELS VIA A SECULAR EQUATION FOR THE FLUX JACOBIAN [J].
Burger, Raimund ;
Donat, Rosa ;
Mulet, Pep ;
Vega, Carlos A. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2010, 70 (07) :2186-2213
[8]  
CHIAVASSA G, 2003, LECT NOTES COMPUTATI, V41, P137
[9]   HINDERED SETTLING FUNCTION WITH NO EMPIRICAL PARAMETERS FOR POLYDISPERSE SUSPENSIONS [J].
DAVIS, RH ;
GECOL, H .
AICHE JOURNAL, 1994, 40 (03) :570-575
[10]   A Secular Equation for the Jacobian Matrix of Certain Multispecies Kinematic Flow Models [J].
Donat, Rosa ;
Mulet, Pep .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (01) :159-175