Target Oriented Perceptual Adversarial Fusion Network for Underwater Image Enhancement

被引:166
作者
Jiang, Zhiying [1 ]
Li, Zhuoxiao [1 ]
Yang, Shuzhou [2 ]
Fan, Xin [2 ,3 ]
Liu, Risheng [2 ,3 ]
机构
[1] Dalian Univ Technol, Sch Software Technol, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, DUT RU Int Sch Informat Sci & Engn, Dalian 116024, Peoples R China
[3] Dalian Univ Technol, Key Lab Ubiquitous Network & Serv Software Liaon, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Image color analysis; Image restoration; Degradation; Deep learning; Image enhancement; Absorption; Image reconstruction; Underwater image enhancement; deep learning; channel attention; color correction; MODEL;
D O I
10.1109/TCSVT.2022.3174817
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to the refraction and absorption of light by water, underwater images usually suffer from severe degradation, such as color cast, hazy blur, and low visibility, which would degrade the effectiveness of marine applications equipped on autonomous underwater vehicles. To eliminate the degradation of underwater images, we propose a target oriented perceptual adversarial fusion network, dubbed TOPAL. Concretely, we consider the degradation factors of underwater images in terms of turbidity and chromatism. And according to the degradation issues, we first develop a multi-scale dense boosted module to strengthen the visual contrast and a deep aesthetic render module to perform the color correction, respectively. After that, we employ the dual channel-wise attention module and guide the adaptive fusion of latent features, in which both diverse details and credible appearance are integrated. To bridge the gap between synthetic and real-world images, a global-local adversarial mechanism is introduced in the reconstruction. Besides, perceptual information is also embedded into the process to assist the understanding of scenery content. To evaluate the performance of TOPAL, we conduct extensive experiments on several benchmarks and make comparisons among state-of-the-art methods. Quantitative and qualitative results demonstrate that our TOPAL improves the quality of underwater images greatly and achieves superior performance than others.
引用
收藏
页码:6584 / 6598
页数:15
相关论文
共 63 条
[1]   Sea-thru: A Method For Removing Water From Underwater Images [J].
Akkaynak, Derya ;
Treibitz, Tali .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :1682-1691
[2]  
Ancuti C, 2012, PROC CVPR IEEE, P81, DOI 10.1109/CVPR.2012.6247661
[3]  
Carlevaris-Bianco N, 2010, OCEANS-IEEE
[4]   Gated Context Aggregation Network for Image Dehazing and Deraining [J].
Chen, Dongdong ;
He, Mingming ;
Fan, Qingnan ;
Liao, Jing ;
Zhang, Liheng ;
Hou, Dongdong ;
Yuan, Lu ;
Hua, Gang .
2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, :1375-1383
[5]   Perceptual Underwater Image Enhancement With Deep Learning and Physical Priors [J].
Chen, Long ;
Jiang, Zheheng ;
Tong, Lei ;
Liu, Zhihua ;
Zhao, Aite ;
Zhang, Qianni ;
Dong, Junyu ;
Zhou, Huiyu .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (08) :3078-3092
[6]  
Chen T, 2020, PR MACH LEARN RES, V119
[7]  
Chen XL, 2021, Arxiv, DOI arXiv:2101.00991
[8]   Underwater Image Enhancement by Wavelength Compensation and Dehazing [J].
Chiang, John Y. ;
Chen, Ying-Ching .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (04) :1756-1769
[9]   Evaluating Weakly Supervised Object Localization Methods Right [J].
Choe, Junsuk ;
Oh, Seong Joon ;
Lee, Seungho ;
Chun, Sanghyuk ;
Akata, Zeynep ;
Shim, Hyunjung .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :3130-3139
[10]   Underwater Depth Estimation and Image Restoration Based on Single Images [J].
Drews, Paulo L. J., Jr. ;
Nascimento, Erickson R. ;
Botelho, Silvia S. C. ;
Montenegro Campos, Mario Fernando .
IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2016, 36 (02) :24-35