Antibacterial activity of PA6/ZnO nanocomposite fibers

被引:30
|
作者
Erem, Aysin Dural [1 ]
Ozcan, Gulay
Skrifvars, Mikael [2 ]
机构
[1] Istanbul Tech Univ, Dept Text Engn Gumussuyu, TR-34437 Istanbul, Turkey
[2] Univ Boras, Sch Engn, Boras, Sweden
关键词
antibacterial; nanocomposite; polyamide; 6; zinc oxide; CERAMIC POWDERS; OXIDE POWDERS; ZNO; NANOTECHNOLOGY; BACTERIA; SURFACE; TIO2; SIZE; MGO;
D O I
10.1177/0040517511407380
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
In this study, ZnO-loaded PA6 nanocomposite preparation and its antibacterial activity are investigated. This work aims to study the effect of the sizes and amount of the ZnO nanofiller on the antibacterial, mechanical, and thermal properties of the PA6/ZnO nanocomposites. The melt intercalation method is applied to prepare polyamide 6 (PA6) nanocomposite fibers, including 0, 0.5, 1, 3, 5 wt % zinc oxide (ZnO), using a laboratory-scale compounder. The antibacterial activity of the fibers against Staphylococcus aureus (ATCC 6538) as a gram positive bacterium and Klebsiella pneumoniae (ATCC 4352) as a gram negative bacterium is determined according to ASTM E 2149-0. Mechanical and thermal characterization tests are performed according to relevant standards (ASTM D7426-08, ASTM E1131-08, ASTM D3822-07; DSC, TGA, tensile tests). It is found that the dispersion of the ZnO particles within the PA6 matrix is homogenous according to scanning electron microscopy results. Antibacterial activity tests show that PA6/ZnO nanocomposite fibers exhibit antibacterial efficiency related to their nanoparticle contents. An increase in the amount of nanoparticles causes an increase of the antibacterial activity of the fibers. On the other hand, mechanical and thermal characterization tests show that the addition of ZnO nanoparticles does not affect the strength and thermal properties of the nanocomposites for these loadings.
引用
收藏
页码:1638 / 1646
页数:9
相关论文
共 50 条
  • [21] J-integral evaluation of PA6 nanocomposite with improved toughness
    Kelnar, I.
    Scudla, J.
    Kotek, J.
    Kretzschmar, B.
    Leuteritz, A.
    POLYMER TESTING, 2006, 25 (05) : 697 - 700
  • [22] Preparation and properties of PET/PA6 copolymer/montmorillonite hybrid nanocomposite
    Li, Chuncheng
    Xiao, Yaonan
    Guan, Guohu
    Liu, Xiaoqing
    Zhang, Dong
    Journal of Applied Polymer Science, 2006, 101 (04): : 2512 - 2517
  • [23] Structure, morphology, thermal stability and carbonization mechanism studies of electrospun PA6/Fe-OMT nanocomposite fibers
    Cai, Yibing
    Huang, Fenglin
    Wei, Qufu
    Song, Lei
    Hu, Yuan
    Ye, Yun
    Xu, Yang
    Gao, Weidong
    POLYMER DEGRADATION AND STABILITY, 2008, 93 (12) : 2180 - 2185
  • [24] Effects of electron-beam irradiation crosslinking on PA6 fibers
    Shifeng Zhu
    Meiwu Shi
    Meifang Zhu
    Fibers and Polymers, 2013, 14 : 525 - 529
  • [25] Post-irradiation thermal degradation of PA6 and PA6,6
    Zaharescu, T.
    Silva, L. G. A.
    Jipa, S.
    Kappel, W.
    RADIATION PHYSICS AND CHEMISTRY, 2010, 79 (03) : 388 - 391
  • [27] High performance PA6/CNTs nanohybrid fibers prepared in the melt
    Scaffaro, R.
    Maio, A.
    Tito, A. C.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2012, 72 (15) : 1918 - 1923
  • [28] Effects of Electron-Beam Irradiation Crosslinking on PA6 Fibers
    Zhu, Shifeng
    Shi, Meiwu
    Zhu, Meifang
    FIBERS AND POLYMERS, 2013, 14 (04) : 525 - 529
  • [29] PA6/POE中PA6非等温结晶行为
    张玉军
    王仕峰
    张勇
    张隐西
    现代塑料加工应用, 2006, (02) : 26 - 29
  • [30] Solid-state nuclear magnetic resonance of the PA6/PC, PA6/PPO, and PA6/PC/PPO blends
    Costa, DA
    Oliveira, CMF
    Tavares, MIB
    JOURNAL OF APPLIED POLYMER SCIENCE, 1998, 69 (01) : 129 - 133