Degenerate lower dimensional tori in reversible systems

被引:22
作者
Wang, Xiaocai [1 ]
Xu, Junxiang [2 ]
Zhang, Dongfeng [2 ]
机构
[1] Huaiyin Inst Technol, Fac Math & Phys, Huaian 223003, Jiangsu, Peoples R China
[2] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Reversible systems; KAM iteration; Degenerate lower dimensional tori; HAMILTONIAN-SYSTEMS; INVARIANT TORI; KAM THEORY; PERSISTENCE; STABILITY;
D O I
10.1016/j.jmaa.2011.09.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the persistence of lower dimensional invariant tori with prescribed frequencies and singular normal matrices in reversible systems. The normal variable is two-dimensional and the unperturbed nonlinear terms in the differential equation for this variable have a special structure. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:776 / 790
页数:15
相关论文
共 29 条
[1]  
[Anonymous], 1973, ANN MATH STUD
[2]  
Arnol'd V.I., 1984, Nonlinear and turbulent processes in physics, Vol. 3 (Kiev, V3, P1161
[3]   Normal linear stability of quasi-periodic tori [J].
Broer, H. W. ;
Hoo, J. ;
Naudot, V. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 232 (02) :355-418
[4]  
Broer H. W., 1996, Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos
[5]   The quasi-periodic reversible Hopf bifurcation [J].
Broer, Henk W. ;
Ciocci, M. Cristina ;
Hanssmann, Heinz .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (08) :2605-2623
[6]   Quasi-periodic stability of normally resonant tori [J].
Broer, Henk W. ;
Ciocci, M. Cristina ;
Hanssmann, Heinz ;
Vanderbauwhede, Andre .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (03) :309-318
[7]  
BROER HW, 1995, J DYNAM DIFFERENTIAL, V7, P191, DOI DOI 10.1007/BF02218818
[8]   Degenerate lower-dimensional tori in Hamiltonian systems [J].
Han, Yuecai ;
Li, Yong ;
Yi, Yingfei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 227 (02) :670-691
[9]   Quasi-periodic bifurcations in reversible systems [J].
Hanssmann, Heinz .
REGULAR & CHAOTIC DYNAMICS, 2011, 16 (1-2) :51-60
[10]   Persistence of lower dimensional tori of general types in Hamiltonian systems [J].
Li, Y ;
Yi, YF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (04) :1565-1600