Degenerate lower dimensional tori in reversible systems

被引:22
作者
Wang, Xiaocai [1 ]
Xu, Junxiang [2 ]
Zhang, Dongfeng [2 ]
机构
[1] Huaiyin Inst Technol, Fac Math & Phys, Huaian 223003, Jiangsu, Peoples R China
[2] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Reversible systems; KAM iteration; Degenerate lower dimensional tori; HAMILTONIAN-SYSTEMS; INVARIANT TORI; KAM THEORY; PERSISTENCE; STABILITY;
D O I
10.1016/j.jmaa.2011.09.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the persistence of lower dimensional invariant tori with prescribed frequencies and singular normal matrices in reversible systems. The normal variable is two-dimensional and the unperturbed nonlinear terms in the differential equation for this variable have a special structure. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:776 / 790
页数:15
相关论文
共 29 条
  • [1] [Anonymous], 1973, ANN MATH STUD
  • [2] Arnol'd V.I., 1984, Nonlinear and turbulent processes in physics, Vol. 3 (Kiev, V3, P1161
  • [3] Normal linear stability of quasi-periodic tori
    Broer, H. W.
    Hoo, J.
    Naudot, V.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 232 (02) : 355 - 418
  • [4] Broer H. W., 1996, Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos
  • [5] The quasi-periodic reversible Hopf bifurcation
    Broer, Henk W.
    Ciocci, M. Cristina
    Hanssmann, Heinz
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (08): : 2605 - 2623
  • [6] Quasi-periodic stability of normally resonant tori
    Broer, Henk W.
    Ciocci, M. Cristina
    Hanssmann, Heinz
    Vanderbauwhede, Andre
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (03) : 309 - 318
  • [7] BROER HW, 1995, J DYNAM DIFFERENTIAL, V7, P191, DOI DOI 10.1007/BF02218818
  • [8] Degenerate lower-dimensional tori in Hamiltonian systems
    Han, Yuecai
    Li, Yong
    Yi, Yingfei
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 227 (02) : 670 - 691
  • [9] Quasi-periodic bifurcations in reversible systems
    Hanssmann, Heinz
    [J]. REGULAR & CHAOTIC DYNAMICS, 2011, 16 (1-2) : 51 - 60
  • [10] Persistence of lower dimensional tori of general types in Hamiltonian systems
    Li, Y
    Yi, YF
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (04) : 1565 - 1600