Nonlinear tunneling effect in the (2+1)-dimensional cubic-quintic nonlinear Schrodinger equation with variable coefficients

被引:19
|
作者
Dai, C. Q. [1 ,3 ]
Yang, Q. [2 ]
He, J. D. [4 ]
Wang, Y. Y. [1 ]
机构
[1] Zhejiang A&F Univ, Sch Sci, Linan 311300, Zhejiang, Peoples R China
[2] Jiaxing Univ, Coll Math & Informat Engn, Jiaxing 314001, Peoples R China
[3] Suzhou Univ, Sch Phys Sci & Technol, Suzhou 215006, Jiangsu, Peoples R China
[4] Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Zhejiang, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL D | 2011年 / 63卷 / 01期
关键词
EXACT SPATIAL SIMILARITONS; SOLITARY WAVE SOLUTIONS; OPTICAL SIMILARITONS; VARYING DISPERSION; SOLITONS; MANAGEMENT; FIBERS; BRIGHT;
D O I
10.1140/epjd/e2011-20031-6
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By means of the similarity transformation, we obtain exact solutions of the (2+1)-dimensional generalized nonlinear Schrodinger equation, which describes the propagation of optical beams in a cubic-quintic nonlinear medium with inhomogeneous dispersion and gain. A one-to-one correspondence between such exact solutions and solutions of the constant-coefficient cubic-quintic nonlinear Schrodinger equation exists when two certain compatibility conditions are satisfied. Under these conditions, we discuss nonlinear tunneling effect of self-similar solutions. Considering the fluctuation of the fiber parameter in real application, the exact balance conditions do not satisfy, and then we perform direct numerical analysis with initial 5% white noise for the bright similariton passing through the diffraction barrier and well. Numerical calculations indicate stable propagation of the bright similariton over tens of diffraction lengths.
引用
收藏
页码:141 / 148
页数:8
相关论文
共 50 条
  • [41] The Soliton Scattering of the Cubic-Quintic Nonlinear Schrodinger Equation on the External Potentials
    Aklan, Nor Amirah Busul
    Umarov, Bakhram
    22ND NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM22), 2015, 1682
  • [42] Dynamics of localized electromagnetic waves for a cubic-quintic nonlinear Schrodinger equation
    Douvagai
    Salathiel, Yakada
    Betchewe, Gambo
    Doka, Serge Yamigno
    Crepin, Kofane Timoleon
    EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (03):
  • [43] Vortex solitons in fractional nonlinear Schrodinger equation with the cubic-quintic nonlinearity
    Li, Pengfei
    Malomed, Boris A.
    Mihalache, Dumitru
    CHAOS SOLITONS & FRACTALS, 2020, 137
  • [44] Some Exact Solutions of Variable Coefficient Cubic-Quintic Nonlinear Schrodinger Equation with an External Potential
    Zhu Jia-Min
    Liu Yu-Lu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 51 (03) : 391 - 394
  • [46] A new way to exact quasi-soliton solutions and soliton interaction for the cubic-quintic nonlinear Schrodinger equation with variable coefficients
    Hao, RY
    Li, L
    Li, ZH
    Yang, RC
    Zhou, GS
    OPTICS COMMUNICATIONS, 2005, 245 (1-6) : 383 - 390
  • [47] Solitons for the cubic-quintic nonlinear Schrdinger equation with varying coefficients
    陈元明
    马松华
    马正义
    Chinese Physics B, 2012, 21 (05) : 137 - 143
  • [48] Vortex solitons in the (2+1)-dimensional nonlinear Schrodinger equation with variable diffraction and nonlinearity coefficients
    Xu, Siliu
    Petrovic, Nikola Z.
    Belic, Milivoj R.
    PHYSICA SCRIPTA, 2013, 87 (04)
  • [49] Modulation instability gain and nonlinear modes generation in discrete cubic-quintic nonlinear Schrodinger equation
    Abbagari, Souleymanou
    Houwe, Alphonse
    Saliou, Youssoufa
    Akinyemi, Lanre
    Rezazadeh, Hadi
    Bouetou, Thomas Bouetou
    PHYSICS LETTERS A, 2022, 456
  • [50] On Solving the (2+1)-Dimensional Nonlinear Cubic-Quintic Ginzburg-Landau Equation Using Five Different Techniques
    Zayed, Elsayed M. E.
    Al-Nowehy, A. -G
    Elshater, Mona E. M.
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2018, 31 (02): : 97 - 118