Nonlinear tunneling effect in the (2+1)-dimensional cubic-quintic nonlinear Schrodinger equation with variable coefficients

被引:19
|
作者
Dai, C. Q. [1 ,3 ]
Yang, Q. [2 ]
He, J. D. [4 ]
Wang, Y. Y. [1 ]
机构
[1] Zhejiang A&F Univ, Sch Sci, Linan 311300, Zhejiang, Peoples R China
[2] Jiaxing Univ, Coll Math & Informat Engn, Jiaxing 314001, Peoples R China
[3] Suzhou Univ, Sch Phys Sci & Technol, Suzhou 215006, Jiangsu, Peoples R China
[4] Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Zhejiang, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL D | 2011年 / 63卷 / 01期
关键词
EXACT SPATIAL SIMILARITONS; SOLITARY WAVE SOLUTIONS; OPTICAL SIMILARITONS; VARYING DISPERSION; SOLITONS; MANAGEMENT; FIBERS; BRIGHT;
D O I
10.1140/epjd/e2011-20031-6
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By means of the similarity transformation, we obtain exact solutions of the (2+1)-dimensional generalized nonlinear Schrodinger equation, which describes the propagation of optical beams in a cubic-quintic nonlinear medium with inhomogeneous dispersion and gain. A one-to-one correspondence between such exact solutions and solutions of the constant-coefficient cubic-quintic nonlinear Schrodinger equation exists when two certain compatibility conditions are satisfied. Under these conditions, we discuss nonlinear tunneling effect of self-similar solutions. Considering the fluctuation of the fiber parameter in real application, the exact balance conditions do not satisfy, and then we perform direct numerical analysis with initial 5% white noise for the bright similariton passing through the diffraction barrier and well. Numerical calculations indicate stable propagation of the bright similariton over tens of diffraction lengths.
引用
收藏
页码:141 / 148
页数:8
相关论文
共 50 条
  • [31] EXTENDED SYMMETRIES AND SOLUTIONS OF (2+1)-DIMENSIONAL NONLINEAR SCHRODINGER EQUATION WITH VARIABLE COEFFICIENTS
    Wang, Jia
    Li, Biao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2009, 20 (11): : 1681 - 1696
  • [32] Exact solutions of the (2+1)-dimensional quintic nonlinear Schrödinger equation with variable coefficients
    Si-Liu Xu
    Nikola Petrović
    Milivoj R. Belić
    Nonlinear Dynamics, 2015, 80 : 583 - 589
  • [33] Novel bright and kink similariton solutions of cubic-quintic nonlinear Schrodinger equation with distributed coefficients
    Xue, Ruirong
    Yang, Rongcao
    Jia, Heping
    Wang, Yan
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [34] Solitons for the cubic-quintic nonlinear Schrodinger equation with time- and space-modulated coefficients
    Belmonte-Beitia, J.
    Cuevas, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (16)
  • [35] Symmetry classification of variable coefficient cubic-quintic nonlinear Schrodinger equations
    Ozemir, C.
    Gungor, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (02)
  • [36] Optical Solitons for The Cubic-Quintic Nonlinear Schrodinger Equation<bold> </bold>
    Al-Ghafri, K. S.
    Krishnan, E. V.
    Biswas, Anjan
    ICNPAA 2018 WORLD CONGRESS: 12TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES, 2018, 2046
  • [37] Stability of spinning ring solitons of the cubic-quintic nonlinear Schrodinger equation
    Towers, I
    Buryak, AV
    Sammut, RA
    Malomed, BA
    Crasovan, LC
    Mihalache, D
    PHYSICS LETTERS A, 2001, 288 (5-6) : 292 - 298
  • [39] Traveling-wave solutions of the cubic-quintic nonlinear Schrodinger equation
    Schurmann, HW
    PHYSICAL REVIEW E, 1996, 54 (04) : 4312 - 4320
  • [40] Interaction of Solitons With Delta Potential In The Cubic-Quintic Nonlinear Schrodinger Equation
    Aklan, Nor Amirah Busul
    Umarov, Bakhram
    2015 INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS (ICREM7), 2015, : 93 - 96