Nonlinear tunneling effect in the (2+1)-dimensional cubic-quintic nonlinear Schrodinger equation with variable coefficients

被引:19
|
作者
Dai, C. Q. [1 ,3 ]
Yang, Q. [2 ]
He, J. D. [4 ]
Wang, Y. Y. [1 ]
机构
[1] Zhejiang A&F Univ, Sch Sci, Linan 311300, Zhejiang, Peoples R China
[2] Jiaxing Univ, Coll Math & Informat Engn, Jiaxing 314001, Peoples R China
[3] Suzhou Univ, Sch Phys Sci & Technol, Suzhou 215006, Jiangsu, Peoples R China
[4] Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Zhejiang, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL D | 2011年 / 63卷 / 01期
关键词
EXACT SPATIAL SIMILARITONS; SOLITARY WAVE SOLUTIONS; OPTICAL SIMILARITONS; VARYING DISPERSION; SOLITONS; MANAGEMENT; FIBERS; BRIGHT;
D O I
10.1140/epjd/e2011-20031-6
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By means of the similarity transformation, we obtain exact solutions of the (2+1)-dimensional generalized nonlinear Schrodinger equation, which describes the propagation of optical beams in a cubic-quintic nonlinear medium with inhomogeneous dispersion and gain. A one-to-one correspondence between such exact solutions and solutions of the constant-coefficient cubic-quintic nonlinear Schrodinger equation exists when two certain compatibility conditions are satisfied. Under these conditions, we discuss nonlinear tunneling effect of self-similar solutions. Considering the fluctuation of the fiber parameter in real application, the exact balance conditions do not satisfy, and then we perform direct numerical analysis with initial 5% white noise for the bright similariton passing through the diffraction barrier and well. Numerical calculations indicate stable propagation of the bright similariton over tens of diffraction lengths.
引用
收藏
页码:141 / 148
页数:8
相关论文
共 50 条
  • [21] On vortex and dark solitons in the cubic-quintic nonlinear Schrodinger equation
    Paredes, Angel
    Salgueiro, Jose R.
    Michinel, Humberto
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 437
  • [22] A variational approach in the dissipative cubic-quintic nonlinear Schrodinger equation
    Freitas, DS
    De Oliveira, JR
    MODERN PHYSICS LETTERS B, 2002, 16 (1-2): : 27 - 32
  • [23] Multistable solitons in the cubic-quintic discrete nonlinear Schrodinger equation
    Carretero-Gonzalez, R.
    Talley, J. D.
    Chong, C.
    Malomed, B. A.
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) : 77 - 89
  • [24] Drag force in bimodal cubic-quintic nonlinear Schrodinger equation
    Feijoo, David
    Ordonez, Ismael
    Paredes, Angel
    Michinel, Humberto
    PHYSICAL REVIEW E, 2014, 90 (03):
  • [25] New exact solutions for the cubic-quintic nonlinear Schrodinger equation
    Peng, Yan-Ze
    Krishnan, E. V.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2007, 5 (02) : 243 - 252
  • [26] Periodic and solitary waves of the cubic-quintic nonlinear Schrodinger equation
    Hong, L
    Beech, R
    Osman, F
    He, XT
    Lou, SY
    Hora, H
    JOURNAL OF PLASMA PHYSICS, 2004, 70 : 415 - 429
  • [27] Dark-bright optical solitary waves and modulation instability analysis with (2+1)-dimensional cubic-quintic nonlinear Schrodinger equation
    Inc, Mustafa
    Aliyu, Aliyu Isa
    Yusuf, Abdullahi
    Baleanu, Dumitru
    WAVES IN RANDOM AND COMPLEX MEDIA, 2019, 29 (03) : 393 - 402
  • [28] Conservation laws and Darboux transformation for the coupled cubic-quintic nonlinear Schrodinger equations with variable coefficients in nonlinear optics
    Qi, Feng-Hua
    Ju, Hong-Mei
    Meng, Xiang-Hua
    Li, Juan
    NONLINEAR DYNAMICS, 2014, 77 (04) : 1331 - 1337
  • [29] Exact solutions of a two-dimensional cubic-quintic discrete nonlinear Schrodinger equation
    Khare, Avinash
    Rasmussen, Kim O.
    Samuelsen, Mogens R.
    Saxena, Avadh
    PHYSICA SCRIPTA, 2011, 84 (06)
  • [30] On the breathers and rogue waves to a (2+1)-dimensional nonlinear Schrodinger equation with variable coefficients
    Wang, Xiu-Bin
    Han, Bo
    WAVES IN RANDOM AND COMPLEX MEDIA, 2021, 31 (06) : 1072 - 1082