Nonlinear tunneling effect in the (2+1)-dimensional cubic-quintic nonlinear Schrodinger equation with variable coefficients

被引:19
作者
Dai, C. Q. [1 ,3 ]
Yang, Q. [2 ]
He, J. D. [4 ]
Wang, Y. Y. [1 ]
机构
[1] Zhejiang A&F Univ, Sch Sci, Linan 311300, Zhejiang, Peoples R China
[2] Jiaxing Univ, Coll Math & Informat Engn, Jiaxing 314001, Peoples R China
[3] Suzhou Univ, Sch Phys Sci & Technol, Suzhou 215006, Jiangsu, Peoples R China
[4] Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Zhejiang, Peoples R China
关键词
EXACT SPATIAL SIMILARITONS; SOLITARY WAVE SOLUTIONS; OPTICAL SIMILARITONS; VARYING DISPERSION; SOLITONS; MANAGEMENT; FIBERS; BRIGHT;
D O I
10.1140/epjd/e2011-20031-6
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By means of the similarity transformation, we obtain exact solutions of the (2+1)-dimensional generalized nonlinear Schrodinger equation, which describes the propagation of optical beams in a cubic-quintic nonlinear medium with inhomogeneous dispersion and gain. A one-to-one correspondence between such exact solutions and solutions of the constant-coefficient cubic-quintic nonlinear Schrodinger equation exists when two certain compatibility conditions are satisfied. Under these conditions, we discuss nonlinear tunneling effect of self-similar solutions. Considering the fluctuation of the fiber parameter in real application, the exact balance conditions do not satisfy, and then we perform direct numerical analysis with initial 5% white noise for the bright similariton passing through the diffraction barrier and well. Numerical calculations indicate stable propagation of the bright similariton over tens of diffraction lengths.
引用
收藏
页码:141 / 148
页数:8
相关论文
共 52 条
[1]   Stabilization of bright solitons and vortex solitons in a trapless three-dimensional Bose-Einstein condensate by temporal modulation of the scattering length [J].
Adhikari, SK .
PHYSICAL REVIEW A, 2004, 69 (06) :063613-1
[2]   RETRACTED: An analytical approach to soliton of the saturable non-linear Schrodinger equation determination and consideration of stability of solitary solutions of cubic-quintic non-linear Schrodinger equation (CQNLSE) (Retracted article. See vol. 19, pg. 325, 2014) [J].
Adib, Behrooz ;
Heidari, Alireza ;
Tayyari, Sayyed Faramarz .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (05) :2034-2045
[3]   Solitons with cubic and quintic nonlinearities modulated in space and time [J].
Avelar, A. T. ;
Bazeia, D. ;
Cardoso, W. B. .
PHYSICAL REVIEW E, 2009, 79 (02)
[4]   Enigmas of optical and matter-wave soliton nonlinear tunneling [J].
Belyaeva, T. L. ;
Serkin, V. N. ;
Hernandez-Tenorio, C. ;
Garcia-Santibanez, F. .
JOURNAL OF MODERN OPTICS, 2010, 57 (12) :1087-1099
[5]   Spinning solitons in cubic-quintic nonlinear media [J].
Crasovan, LC ;
Malomed, BA ;
Mihalache, D .
PRAMANA-JOURNAL OF PHYSICS, 2001, 57 (5-6) :1041-1059
[6]   Self-similar optical beam in nonlinear waveguides [J].
Dai, C. Q. ;
Xu, Y. J. ;
Chen, R. P. ;
Zhu, S. Q. .
EUROPEAN PHYSICAL JOURNAL D, 2010, 59 (03) :457-461
[7]   Ultrashort self-similar solutions of the cubic-quintic nonlinear Schrodinger equation with distributed coefficients in the inhomogeneous fiber [J].
Dai, Chao-Qing ;
Wang, Yue-Yue ;
Wang, Xiao-Gang .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (15)
[8]   Exact spatial similaritons for the generalized (2+1)-dimensional nonlinear Schrodinger equation with distributed coefficients [J].
Dai, Chao-Qing ;
Zhu, Shi-Qun ;
Wang, Liang-Liang ;
Zhang, Jie-Fang .
EPL, 2010, 92 (02)
[9]   Exact travelling wave solutions of the discrete nonlinear Schrodinger equation and the hybrid lattice equation obtained via the exp-function method [J].
Dai, Chao-Qing ;
Wang, Yue-Yue .
PHYSICA SCRIPTA, 2008, 78 (01)
[10]   Exact solutions of discrete complex cubic-quintic Ginzburg-Landau equation with non-local quintic term [J].
Dai, Chaoqing ;
Zhang, Jiefang .
OPTICS COMMUNICATIONS, 2006, 263 (02) :309-316