Nonlinear tunneling effect in the (2+1)-dimensional cubic-quintic nonlinear Schrodinger equation with variable coefficients

被引:19
|
作者
Dai, C. Q. [1 ,3 ]
Yang, Q. [2 ]
He, J. D. [4 ]
Wang, Y. Y. [1 ]
机构
[1] Zhejiang A&F Univ, Sch Sci, Linan 311300, Zhejiang, Peoples R China
[2] Jiaxing Univ, Coll Math & Informat Engn, Jiaxing 314001, Peoples R China
[3] Suzhou Univ, Sch Phys Sci & Technol, Suzhou 215006, Jiangsu, Peoples R China
[4] Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Zhejiang, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL D | 2011年 / 63卷 / 01期
关键词
EXACT SPATIAL SIMILARITONS; SOLITARY WAVE SOLUTIONS; OPTICAL SIMILARITONS; VARYING DISPERSION; SOLITONS; MANAGEMENT; FIBERS; BRIGHT;
D O I
10.1140/epjd/e2011-20031-6
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By means of the similarity transformation, we obtain exact solutions of the (2+1)-dimensional generalized nonlinear Schrodinger equation, which describes the propagation of optical beams in a cubic-quintic nonlinear medium with inhomogeneous dispersion and gain. A one-to-one correspondence between such exact solutions and solutions of the constant-coefficient cubic-quintic nonlinear Schrodinger equation exists when two certain compatibility conditions are satisfied. Under these conditions, we discuss nonlinear tunneling effect of self-similar solutions. Considering the fluctuation of the fiber parameter in real application, the exact balance conditions do not satisfy, and then we perform direct numerical analysis with initial 5% white noise for the bright similariton passing through the diffraction barrier and well. Numerical calculations indicate stable propagation of the bright similariton over tens of diffraction lengths.
引用
收藏
页码:141 / 148
页数:8
相关论文
共 50 条
  • [1] Nonlinear tunneling effect in the (2+1)-dimensional cubic-quintic nonlinear Schrödinger equation with variable coefficients
    C. Q. Dai
    Q. Yang
    J. D. He
    Y. Y. Wang
    The European Physical Journal D, 2011, 63 : 141 - 148
  • [2] Solitary waves for cubic-quintic Nonlinear Schrodinger equation with variable coefficients
    Zhang, JL
    Wang, ML
    Li, XZ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (02) : 343 - 346
  • [3] SOLITON SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR SCHRODINGER EQUATION WITH VARIABLE COEFFICIENTS
    Triki, Houria
    Wazwaz, Abdul-Majid
    ROMANIAN JOURNAL OF PHYSICS, 2016, 61 (3-4): : 360 - 366
  • [4] Spatial similaritons in the (2+1)-dimensional inhomogeneous cubic-quintic nonlinear Schrodinger equation
    Dai, Chao-Qing
    Ye, Jian-Feng
    Chen, Xin-Fen
    OPTICS COMMUNICATIONS, 2012, 285 (19) : 3988 - 3994
  • [5] (2+1)-Dimensional Analytical Solutions of the Combining Cubic-Quintic Nonlinear Schrodinger Equation
    Guo Ai-Lin
    Lin Ji
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 57 (04) : 523 - 529
  • [6] Solitons for the cubic-quintic nonlinear Schrodinger equation with varying coefficients
    Chen Yuan-Ming
    Ma Song-Hua
    Ma Zheng-Yi
    CHINESE PHYSICS B, 2012, 21 (05)
  • [7] Equivalence transformations and differential invariants of a generalized cubic-quintic nonlinear Schrodinger equation with variable coefficients
    Li, Ruijuan
    Yong, Xuelin
    Chen, Yuning
    Huang, Yehui
    NONLINEAR DYNAMICS, 2020, 102 (01) : 339 - 348
  • [8] Optical quasi-soliton solutions for the cubic-quintic nonlinear Schrodinger equation with variable coefficients
    Yang, Q
    Zhang, JF
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2005, 19 (31): : 4629 - 4636
  • [9] Solitons for the cubic-quintic nonlinear Schrodinger equation with Raman effect in nonlinear optics
    Wang, Ping
    Shang, Tao
    Feng, Li
    Du, Yingjie
    OPTICAL AND QUANTUM ELECTRONICS, 2014, 46 (09) : 1117 - 1126
  • [10] Solitary Waves for Cubic-Quintic Nonlinear SchrSdinger Equation with Variable Coefficients
    ZHANG Jin-Liang~1 WANG Ming-Liang~(1
    CommunicationsinTheoreticalPhysics, 2006, 45 (02) : 343 - 346