Molecular interactions of the Saccharomyces cerevisiae Atg1 complex provide insights into assembly and regulatory mechanisms

被引:30
作者
Chew, Leon H. [1 ]
Lu, Shan [2 ]
Liu, Xu [3 ,4 ]
Li, Franco Kk [1 ]
Yu, Angela Yh [1 ]
Klionsky, Daniel J. [3 ,4 ]
Dong, Meng-Qiu [2 ]
Yip, Calvin K. [1 ]
机构
[1] Univ British Columbia, Dept Biochem & Mol Biol, Vancouver, BC V5Z 1M9, Canada
[2] Natl Inst Biol Sci, Beijing, Peoples R China
[3] Univ Michigan, Inst Life Sci, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Mol Cellular & Dev Biol, Ann Arbor, MI 48109 USA
基金
加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
Atg1; autophagy; crosslinking mass spectrometry; electron microscopy; macromolecular assembly; Saccharomycescerevisiae; AUTOPHAGY-RELATED PROTEINS; KINASE COMPLEX; PHOSPHORYLATION; IDENTIFICATION; DYNAMICS; ARCHITECTURE; RECRUITMENT; INDUCTION; SCAFFOLD; MUTANTS;
D O I
10.1080/15548627.2015.1040972
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The Atg1 complex, which contains 5 major subunits: Atg1, Atg13, Atg17, Atg29, and Atg31, regulates the induction of autophagy and autophagosome formation. To gain a better understanding of the overall architecture and assembly mechanism of this essential autophagy regulatory complex, we have reconstituted a core assembly of the Saccharomyces cerevisiae Atg1 complex composed of full-length Atg17, Atg29, and Atg31, along with the C-terminal domains of Atg1 (Atg1[CTD]) and Atg13 (Atg13[CTD]). Using chemical-crosslinking coupled with mass spectrometry (CXMS) analysis we systematically mapped the intersubunit interaction interfaces within this complex. Our data revealed that the intrinsically unstructured C-terminal domain of Atg29 interacts directly with Atg17, whereas Atg17 interacts with Atg13 in 2 distinct intrinsically unstructured regions, including a previously unknown motif that encompasses several putative phosphorylation sites. The Atg1[CTD] crosslinks exclusively to the Atg13[CTD] and does not appear to make direct contact with the Atg17-Atg31-Atg29 scaffold. Finally, single-particle electron microscopy analysis revealed that both the Atg13[CTD] and Atg1[CTD] localize to the tip regions of Atg17-Atg31-Atg29 and do not alter the distinct curvature of this scaffolding subcomplex. This work provides a comprehensive understanding of the subunit interactions in the fully assembled Atg1 core complex, and uncovers the potential role of intrinsically disordered regions in regulating complex integrity.
引用
收藏
页码:891 / 905
页数:15
相关论文
共 52 条
  • [1] SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information
    Biasini, Marco
    Bienert, Stefan
    Waterhouse, Andrew
    Arnold, Konstantin
    Studer, Gabriel
    Schmidt, Tobias
    Kiefer, Florian
    Cassarino, Tiziano Gallo
    Bertoni, Martino
    Bordoli, Lorenza
    Schwede, Torsten
    [J]. NUCLEIC ACIDS RESEARCH, 2014, 42 (W1) : W252 - W258
  • [2] Integrated Structural Analysis of the Human Nuclear Pore Complex Scaffold
    Bui, Khanh Huy
    von Appen, Alexander
    DiGuilio, Amanda L.
    Ori, Alessandro
    Sparks, Lenore
    Mackmull, Marie-Therese
    Bock, Thomas
    Hagen, Wim
    Andres-Pons, Amparo
    Glavy, Joseph S.
    Beck, Martin
    [J]. CELL, 2013, 155 (06) : 1233 - 1243
  • [3] A multiple ATG gene knockout strain for yeast two-hybrid analysis
    Cao, Yang
    Nair, Usha
    Yasumura-Yorimitsu, Kyoko
    Klionsky, Daniel J.
    [J]. AUTOPHAGY, 2009, 5 (05) : 699 - 705
  • [4] Kinase-Inactivated ULK Proteins Inhibit Autophagy via Their Conserved C- Terminal Domains Using an Atg13-Independent Mechanism
    Chan, Edmond Y. W.
    Longatti, Andrea
    McKnight, Nicole C.
    Tooze, Sharon A.
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2009, 29 (01) : 157 - 171
  • [5] The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae
    Cheong, Heesun
    Nair, Usha
    Geng, Jiefei
    Klionsky, Daniel J.
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2008, 19 (02) : 668 - 681
  • [6] Structural characterization of the Saccharomyces cerevisiae autophagy regulatory complex Atg17-Atg31-Atg29
    Chew, Leon H.
    Setiaputra, Dheva
    Klionsky, Daniel J.
    Yip, Calvin K.
    [J]. AUTOPHAGY, 2013, 9 (10) : 1467 - 1474
  • [7] Choi AMK, 2013, NEW ENGL J MED, V368, P651, DOI [10.1056/NEJMra1205406, 10.1056/NEJMc1303158]
  • [8] Characterization of the Raptor/ 4E-BP1 Interaction by Chemical Cross- linking Coupled with Mass Spectrometry Analysis*
    Coffman, Kimberly
    Yang, Bing
    Lu, Jie
    Tetlow, Ashley L.
    Pelliccio, Emelia
    Lu, Shan
    Guo, Da-Chuan
    Tang, Chun
    Dong, Meng-Qiu
    Tamanoi, Fuyuhiko
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (08) : 4723 - 4734
  • [9] SPIDER and WEB: Processing and visualization of images in 3D electron microscopy and related fields
    Frank, J
    Radermacher, M
    Penczek, P
    Zhu, J
    Li, YH
    Ladjadj, M
    Leith, A
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 1996, 116 (01) : 190 - 199
  • [10] Structural basis of starvation-induced assembly of the autophagy initiation complex
    Fujioka, Yuko
    Suzuki, Sho W.
    Yamamoto, Hayashi
    Kondo-Kakuta, Chika
    Kimura, Yayoi
    Hirano, Hisashi
    Akada, Rinji
    Inagaki, Fuyuhiko
    Ohsumi, Yoshinori
    Noda, Nobuo N.
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2014, 21 (06) : 513 - 521