Aggregation of Individual Rankings Through Fusion Functions: Criticism and Optimality Analysis

被引:12
作者
Bustince, Humberto [1 ,2 ]
Bedregal, Benjamin [2 ,3 ]
Jesus Campion, Maria [4 ]
da Silva, Ivanosca [5 ]
Fernandez, Javier [1 ,2 ]
Indurain, Esteban [1 ,6 ]
Raventos-Pujol, Armajac [4 ]
Santiago, Regivan H. N. [7 ]
机构
[1] Univ Publ Navarra, Dept Estad Informat & Matemat, Pamplona 31006, Spain
[2] Univ Publ Navarra, Inst Smart Cities, Pamplona 31006, Spain
[3] Univ Fed Rio Grande Norte UFRN, Dept Informat & Matemat Aplicada DIMAp, BR-59078970 Natal, RN, Brazil
[4] Univ Publ Navarra, Inst Adv Res Business & Econ, Pamplona 31006, Spain
[5] Univ Fed Rio Grande Norte UFRN, Diretoria Mat & Patrimonio DMP, BR-59078970 Natal, RN, Brazil
[6] Univ Publ Navarra, InaMat2 Inst Adv Mat & Math, Pamplona 31006, Spain
[7] Univ Publ Navarra, Inst Adv Res Business & Econ, Pamplona 59078970, Spain
关键词
Decision making; Proposals; Mathematics; Aggregates; Smart cities; Organizations; Indexes; Aggregation; decision-making; general means; ranking; ranking optimality; score functions; social choice; DECISION-MAKING;
D O I
10.1109/TFUZZ.2020.3042611
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Throughout this article, our main idea is to analyze from a theoretical and normative point of view different methods to aggregate individual rankings. To do so, first, we introduce the concept of a general mean on an abstract set. This new concept conciliates the social choice-where well-known impossibility results as the Arrovian ones are encountered-and the decision-making approaches-where the necessity of fusing rankings is unavoidable. Moreover, it gives rise to a reasonable definition of the concept of a ranking fusion function that does indeed satisfy the axioms of a general mean. Then, we will introduce some methods to build ranking fusion functions, paying a special attention to the use of score functions, and pointing out the equivalence between ranking and scoring. To conclude, we prove that any ranking fusion function introduces a partial order on rankings implemented on a finite set of alternatives. Therefore, this allows us to compare rankings and different methods of aggregation, so that in practice, one should look for the maximal elements with respect to such orders defined on rankings.
引用
收藏
页码:638 / 648
页数:11
相关论文
共 24 条
[1]   Using extension sets to aggregate partial rankings in a flexible setting [J].
Aledo, Juan A. ;
Gamez, Jose A. ;
Molina, David .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 290 :208-223
[2]  
Arrow K. J, 1951, SOCIAL COICE INDIVID
[3]   Construction of interval-valued fuzzy preference relations from ignorance functions and fuzzy preference relations. Application to decision making [J].
Barrenechea, Edurne ;
Fernandez, Javier ;
Pagola, Miguel ;
Chiclana, Francisco ;
Bustince, Humberto .
KNOWLEDGE-BASED SYSTEMS, 2014, 58 :33-44
[4]   Linguistic-labels aggregation and consensus measure for autocratic decision making using group recommendations [J].
Ben-Arieh, David ;
Chen, Zhifeng .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2006, 36 (03) :558-568
[5]   Consensus in multi-expert decision making problems using penalty functions defined over a Cartesian product of lattices [J].
Bustince, H. ;
Barrenechea, E. ;
Calvo, T. ;
James, S. ;
Beliakov, G. .
INFORMATION FUSION, 2014, 17 :56-64
[6]   A New Approach to Interval-Valued Choquet Integrals and the Problem of Ordering in Interval-Valued Fuzzy Set Applications [J].
Bustince, Humberto ;
Galar, Mikel ;
Bedregal, Benjamin ;
Kolesarova, Anna ;
Mesiar, Radko .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2013, 21 (06) :1150-1162
[7]   An axiomatic approach to finite means [J].
Campion, Maria J. ;
Candeal, Juan C. ;
Catalan, Raquel G. ;
Giarlotta, Alfio ;
Greco, Salvatore ;
Indurain, Esteban ;
Montero, Javier .
INFORMATION SCIENCES, 2018, 457 :12-28
[8]   NECESSARY AND SUFFICIENT CONDITIONS FOR A RESOLUTION OF THE SOCIAL CHOICE PARADOX [J].
CHICHILNISKY, G ;
HEAL, G .
JOURNAL OF ECONOMIC THEORY, 1983, 31 (01) :68-87
[9]   Approximate and dynamic rank aggregation [J].
Chin, FYL ;
Deng, XT ;
Fang, QZ ;
Zhu, SF .
THEORETICAL COMPUTER SCIENCE, 2004, 325 (03) :409-424
[10]   On Admissible Total Orders for Interval-valued Intuitionistic Fuzzy Membership Degrees [J].
Da Silva, I. A. ;
Bedregal, B. ;
Santiago, R. H. N. .
FUZZY INFORMATION AND ENGINEERING, 2016, 8 (02) :169-182