AutoDispNet: Improving Disparity Estimation With AutoML

被引:48
作者
Saikia, Tonmoy [1 ]
Marrakchi, Yassine [1 ]
Zela, Arber [1 ]
Hutter, Frank [1 ]
Brox, Thomas [1 ]
机构
[1] Univ Freiburg, Freiburg, Germany
来源
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019) | 2019年
关键词
NETWORKS;
D O I
10.1109/ICCV.2019.00190
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Much research work in computer vision is being spent on optimizing existing network architectures to obtain a few more percentage points on benchmarks. Recent AutoML approaches promise to relieve us from this effort. However, they are mainly designed for comparatively small-scale classification tasks. In this work, we show how to use and extend existing AutoML techniques to efficiently optimize large-scale U-Net-like encoder-decoder architectures. In particular, we leverage gradient-based neural architecture search and Bayesian optimization for hyperparameter search. The resulting optimization does not require a large-scale compute cluster. We show results on disparity estimation that clearly outperform the manually optimized baseline and reach state-of-the-art performance.
引用
收藏
页码:1812 / 1823
页数:12
相关论文
共 80 条
[21]  
Baker Bowen, 2017, INT C LEARN REPR
[22]  
Bello Irwan, 2017, P 34 INT C MACH LEAR, V70, P459
[23]  
Bender P. J., 2018, P INT C MACH LEARN, P550
[24]   A Naturalistic Open Source Movie for Optical Flow Evaluation [J].
Butler, Daniel J. ;
Wulff, Jonas ;
Stanley, Garrett B. ;
Black, Michael J. .
COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 :611-625
[25]  
Cai H., 2019, PROC INT C LEARN REP
[26]  
Cai H, 2018, AAAI CONF ARTIF INTE, P2787
[27]  
Cai Han, 2018, ABS180602639 CORR
[28]  
Chang Jia-Ren, 2018, ARXIV180308669
[29]  
Chen LC, 2018, ADV NEUR IN, V31
[30]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851