Comparison of Li/Ni antisite defects in Fd-3 m and P4332 nanostructured LiNi0.5Mn1.5O4 electrode for Li-ion batteries

被引:36
作者
Gu, Yi-Jie [1 ]
Li, Yu [1 ,2 ]
Chen, Yun-Bo [3 ]
Liu, Hong-Quan [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Mat Sci & Engn, Qingdao 266510, Peoples R China
[2] Henan ZhongPingHanBo New Energy Co Ltd, Pingdingshan 467000, Peoples R China
[3] China Acad Machinery Sci & Technol, Adv Manufacture Technol Ctr, Beijing 100044, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
LiNi0.5Mn1.5O4; Li/Ni antisite defects; phase transition; CATHODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; SPINEL LIMN2O4; COPRECIPITATION; CAPACITY; ANODE;
D O I
10.1016/j.electacta.2016.06.124
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Nanostructured LiNi0.5Mn1.5O4 with two different space groups (P4(3)32 and Fd-3m) were synthesized respectively, by using ammonia-mediated carbonate precipitation. X-ray diffraction and Rietveld refinement revealed that Li/Ni antisite defects exist in ordered as well as disordered LiNi0.5Mn1.5O4 cathode materials. Although the degree of Li/Ni antisite defects in Fd-3 m space group was larger compared with that in P4(3)32 space group, it showed better electrochemical performance. Electrochemical impedance spectroscopy confirmed that the LiNi0.5Mn1.5O4 with an Fd-3 m space group has lower charge transfer resistance. Combined with differential curves, we further revealed that there is a faster phase transition during the Li+ intercalation process in the LiNi0.5Mn1.5O4 with an Fd-3 m space group than in the LiNi0.5Mn1.5O4 with a P4(3)32 space group. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:368 / 374
页数:7
相关论文
共 28 条
[1]   Insights about the irreversible capacity of LiNi0.5Mn1.5O4 cathode materials in lithium batteries [J].
Brutti, Sergio ;
Greco, Giorgia ;
Reale, Priscilla ;
Panero, Stefania .
ELECTROCHIMICA ACTA, 2013, 106 :483-493
[2]   Composition-Structure Relationships in the Li-Ion Battery Electrode Material LiNi0.5Mn1.5O4 [J].
Cabana, Jordi ;
Casas-Cabanas, Montserrat ;
Omenya, Fredrick O. ;
Chernova, Natasha A. ;
Zeng, Dongli ;
Whittingham, M. Stanley ;
Grey, Clare P. .
CHEMISTRY OF MATERIALS, 2012, 24 (15) :2952-2964
[3]   Functional Materials for Rechargeable Batteries [J].
Cheng, Fangyi ;
Liang, Jing ;
Tao, Zhanliang ;
Chen, Jun .
ADVANCED MATERIALS, 2011, 23 (15) :1695-1715
[4]   A polymer electrolyte-skinned active material strategy toward high-voltage lithium ion batteries: a polyimide-coated LiNi0.5Mn1.5O4 spinel cathode material case [J].
Cho, Ju-Hyun ;
Park, Jang-Hoon ;
Lee, Myeong-Hee ;
Song, Hyun-Kon ;
Lee, Sang-Young .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (05) :7124-7131
[5]   An Organic Coprecipitation Route to Synthesize High Voltage LiNi0.5Mn1.5O4 [J].
Feng, Jijun ;
Huang, Zhipeng ;
Guo, Chao ;
Chernova, Natasha A. ;
Upreti, Shailesh ;
Whittingham, M. Stanley .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (20) :10227-10232
[6]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[7]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[8]   LiNi0.5Mn1.5O4 synthesized through ammonia-mediated carbonate precipitation [J].
Gu, Yi-Jie ;
Li, Yu ;
Fu, Yang ;
Zang, Qing-Feng ;
Liu, Hong-Quan ;
Ding, Jian-Xu ;
Wang, Yan-Ming ;
Wang, Hai-Feng ;
Ni, Jiangfeng .
ELECTROCHIMICA ACTA, 2015, 176 :1029-1035
[9]   Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures:: Fd(3)over-barm and P4332 [J].
Kim, JH ;
Myung, ST ;
Yoon, CS ;
Kang, SG ;
Sun, YK .
CHEMISTRY OF MATERIALS, 2004, 16 (05) :906-914
[10]   Particle size effect of Li[Ni0.5Mn0.5]O2 prepared by co-precipitation [J].
Lee, K. -S. ;
Myung, S. -T. ;
Moon, J. -S. Myung ;
Sun, Y. -K. .
ELECTROCHIMICA ACTA, 2008, 53 (20) :6033-6037