The role of magnetic resonance imaging on evaluating response of neoadjuvant therapy for breast cancer

被引:0
作者
Guo, Liang-cun [1 ]
Du, Si-yao [1 ]
Yang, Xiao-ping [1 ]
Li, Shu [1 ]
Zhang, Li-na [1 ]
机构
[1] China Med Univ, Dept Radiol, Affiliated Hosp 1, Nanjing North St 155, Shenyang 110001, Liaoning, Peoples R China
关键词
Breast cancer; Magnetic resonance imaging; Neoadjuvant therapy; Preoperative chemotherapy; PATHOLOGICAL COMPLETE RESPONSE; CONTRAST-ENHANCED MRI; APPARENT DIFFUSION-COEFFICIENT; RESIDUAL TUMOR SIZE; PREOPERATIVE ASSESSMENT; PREDICTING RESPONSE; TEXTURE ANALYSIS; WEIGHTED MRI; DCE-MRI; CHEMOTHERAPY;
D O I
10.1007/s42058-020-00046-y
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Breast magnetic resonance imaging (MRI) is always considered to be more accurate for evaluating neoadjuvant therapy (NAT) response than mammography, ultrasound and clinical examination. Preoperative MRI aims to evaluate residual disease to facilitate surgical planning. MRI scans performed before and/or during NAT aim to predict the treatment response and thus adjust the NAT plan at an early stage. MRI accuracy depends on tumor morphology, histology, shrinkage pattern and molecular subtype. Combining multiparameter functional MRI can improve the prediction accuracy. In addition, radiomics offers high-dimensional and high-throughput signatures and were shown to predict treatment response before NAT. This article reviews the indicators of breast MRI for evaluating NAT response, including morphological MRI features, enhancement and pharmacokinetic parameters, apparent diffusion coefficient (ADC), choline concentration, etc., even radiomic signatures and illustrates their advantages, limitations and future directions.
引用
收藏
页码:125 / 136
页数:12
相关论文
共 108 条
[1]   Current and emerging quantitative magnetic resonance imaging methods for assessing and predicting the response of breast cancer to neoadjuvant therapy [J].
Abramson, Richard G. ;
Arlinghaus, Lori R. ;
Weis, Jared A. ;
Li, Xia ;
Dula, Adrienne N. ;
Chekmenev, Eduard Y. ;
Smith, Seth A. ;
Miga, Michael I. ;
Abramson, Vandana G. ;
Yankeelov, Thomas E. .
BREAST CANCER-TARGETS AND THERAPY, 2012, 4 :139-154
[2]   Texture analysis in assessment and prediction of chemotherapy response in breast cancer [J].
Ahmed, Arfan ;
Gibbs, Peter ;
Pickles, Martin ;
Turnbull, Lindsay .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2013, 38 (01) :89-101
[3]   Breast MRI and tumour biology predict axillary lymph node response to neoadjuvant chemotherapy for breast cancer [J].
Al-Hattali, Samia ;
Vinnicombe, Sarah J. ;
Gowdh, Nazleen Muhammad ;
Evans, Andrew ;
Armstrong, Sharon ;
Adamson, Douglas ;
Purdie, Colin A. ;
Macaskill, E. Jane .
CANCER IMAGING, 2019, 19 (01)
[4]   Pretreatment MR Imaging Features of Triple-Negative Breast Cancer: Association with Response to Neoadjuvant Chemotherapy and Recurrence-Free Survival [J].
Bae, Min Sun ;
Shin, Sung Ui ;
Ryu, Han Suk ;
Han, Wonshik ;
Im, Seock-Ah ;
Park, In-Ae ;
Noh, Dong-Young ;
Moon, Woo Kyung .
RADIOLOGY, 2016, 281 (02) :392-400
[5]   Magnetic resonance imaging tumor regression shrinkage patterns after neoadjuvant chemotherapy in patients with locally advanced breast cancer: Correlation with tumor biological subtypes and pathological response after therapy [J].
Ballesio, Laura ;
Gigli, Silvia ;
Di Pastena, Francesca ;
Giraldi, Guglielmo ;
Manganaro, Lucia ;
Anastasi, Emanuela ;
Catalano, Carlo .
TUMOR BIOLOGY, 2017, 39 (03)
[6]   MR spectroscopy of breast cancer for assessing early treatment response: Results from the ACRIN 6657 MRS trial [J].
Bolan, Patrick J. ;
Kim, Eunhee ;
Herman, Benjamin A. ;
Newstead, Gillian M. ;
Rosen, Mark A. ;
Schnall, Mitchell D. ;
Pisano, Etta D. ;
Weatherall, Paul T. ;
Morris, Elizabeth A. ;
Lehman, Constance D. ;
Garwood, Michael ;
Nelson, Michael T. ;
Yee, Douglas ;
Polin, Sandra M. ;
Esserman, Laura J. ;
Gatsonis, Constantine A. ;
Metzger, Gregory J. ;
Newitt, David C. ;
Partridge, Savannah C. ;
Hylton, Nola M. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 46 (01) :290-302
[7]   Sentinel Lymph Node Surgery After Neoadjuvant Chemotherapy in Patients With Node-Positive Breast Cancer The ACOSOG Z1071 (Alliance) Clinical Trial [J].
Boughey, Judy C. ;
Suman, Vera J. ;
Mittendorf, Elizabeth A. ;
Ahrendt, Gretchen M. ;
Wilke, Lee G. ;
Taback, Bret ;
Leitch, A. Marilyn ;
Kuerer, Henry M. ;
Bowling, Monet ;
Flippo-Morton, Teresa S. ;
Byrd, David R. ;
Ollila, David W. ;
Julian, Thomas B. ;
McLaughlin, Sarah A. ;
McCall, Linda ;
Symmans, W. Fraser ;
Le-Petross, Huong T. ;
Haffty, Bruce G. ;
Buchholz, Thomas A. ;
Nelson, Heidi ;
Hunt, Kelly K. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2013, 310 (14) :1455-1461
[8]   Evaluation of MRI accuracy after primary systemic therapy in breast cancer patients considering tumor biology: optimizing the surgical planning [J].
Bouzon, Alberto ;
Iglesias, Angela ;
Acea, Benigno ;
Mosqueral, Cristina ;
Santiago, Paz ;
Mosquera, Joaquin .
RADIOLOGY AND ONCOLOGY, 2019, 53 (02) :171-177
[9]   Diagnostic accuracy of MRI to evaluate tumour response and residual tumour size after neoadjuvant chemotherapy in breast cancer patients [J].
Bouzon, Alberto ;
Acea, Benigno ;
Soler, Rafaela ;
Iglesias, Angela ;
Santiago, Paz ;
Mosquera, Joaquin ;
Calvo, Lourdes ;
Seoane-Pillado, Teresa ;
Garcia, Alejandra .
RADIOLOGY AND ONCOLOGY, 2016, 50 (01) :73-79
[10]   Association of Peritumoral Radiomics With Tumor Biology and Pathologic Response to Preoperative Targeted Therapy for HER2 (ERBB2)-Positive Breast Cancer [J].
Braman, Nathaniel ;
Prasanna, Prateek ;
Whitney, Jon ;
Singh, Salendra ;
Beig, Niha ;
Etesami, Maryam ;
Bates, David D. B. ;
Gallagher, Katherine ;
Bloch, B. Nicolas ;
Vulchi, Manasa ;
Turk, Paulette ;
Bera, Kaustav ;
Abraham, Jame ;
Sikov, William M. ;
Somlo, George ;
Harris, Lyndsay N. ;
Gilmore, Hannah ;
Plecha, Donna ;
Varadan, Vinay ;
Madabhushi, Anant .
JAMA NETWORK OPEN, 2019, 2 (04)