Combinatorial bounds on Hilbert functions of fat points in projective space

被引:26
作者
Cooper, Susan [1 ,2 ]
Harbourne, Brian [1 ]
Teitler, Zach [3 ]
机构
[1] Univ Nebraska, Dept Matemat, Lincoln, NE 68588 USA
[2] Calif Polytech State Univ San Luis Obispo, Dept Math, San Luis Obispo, CA 93407 USA
[3] Boise State Univ, Dept Math, Boise, ID 83725 USA
关键词
LINEAR-SYSTEMS; BASE POINTS; CONJECTURE; RESOLUTIONS; SUPPORT; IDEALS; POWER;
D O I
10.1016/j.jpaa.2010.12.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Hilbert functions of certain non-reduced schemes A supported at finite sets of points in P-N, in particular, fat point schemes. We give combinatorially defined upper and lower bounds for the Hilbert function of A using nothing more than the multiplicities of the points and information about which subsets of the points are linearly dependent. When N = 2, we give these bounds explicitly and we give a sufficient criterion for the upper and lower bounds to be equal. When this criterion is satisfied, we give both a simple formula for the Hilbert function and combinatorially defined upper and lower bounds on the graded Betti numbers for the ideal I-A defining A, generalizing results of Geramita et al. (2006) [16]. We obtain the exact Hilbert functions and graded Betti numbers for many families of examples, interesting combinatorially, geometrically, and algebraically. Our method works in any characteristic. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2165 / 2179
页数:15
相关论文
共 28 条
[1]  
[Anonymous], 1986, P 1984 VANC C ALG GE
[2]   COMBINATORICS AND GEOMETRY OF POWER IDEALS [J].
Ardila, Federico ;
Postnikov, Alexander .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (08) :4357-4384
[3]   COMPARING POWERS AND SYMBOLIC POWERS OF IDEALS [J].
Bocci, Cristiano ;
Harbourne, Brian .
JOURNAL OF ALGEBRAIC GEOMETRY, 2010, 19 (03) :399-417
[4]   Linear systems of plane curves with base points of equal multiplicity [J].
Ciliberto, C ;
Miranda, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (09) :4037-4050
[5]  
Ciliberto C, 2001, NATO SCI SER II MATH, V36, P37
[6]  
Ciliberto C, 2006, RIC MAT, V55, P71, DOI 10.1007/s11587-006-0005-y
[7]  
Cooper S., ARXIVABS09121915V1
[8]  
Dumnicki M., 2007, ANN POL MATH, V90, P131
[9]  
Evain L., 1999, J. Algebraic Geom, V8, P787
[10]   Computing limit linear series with infinitesimal methods [J].
Evain, Laurent .
ANNALES DE L INSTITUT FOURIER, 2007, 57 (06) :1947-1974