Projecting Lattice Polytopes Without Interior Lattice Points

被引:22
作者
Nill, Benjamin [1 ]
Ziegler, Guenter M. [2 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
[2] Free Univ Berlin, Inst Math, D-14195 Berlin, Germany
关键词
lattice polytopes; lattice projections; lattice-free convex bodies; interior points; SIMPLICES; NUMBER; WIDTH;
D O I
10.1287/moor.1110.0503
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We show that up to unimodular equivalence in each dimension there are only finitely many lattice polytopes without interior lattice points that do not admit a lattice projection onto a lower-dimensional lattice polytope without interior lattice points. This was conjectured by Treutlein [Treutlein, J. 2008. 3-Dimensional lattice polytopes without interior lattice points. September 10, http://arXiv.org/abs/0809.1787.] As an immediate corollary, we get a short proof of a recent result of Averkov, Wagner, and Weismantel [Averkov, G., C. Wagner, R. Weismantel. 2010. Maximal lattice-free polyhedra: Finiteness and an explicit description in dimension three. Math. Oper. Res. Forthcoming.], namely, the finiteness of the number of maximal lattice polytopes without interior lattice points. Moreover, we show that, in dimension four and higher, some of these finitely many polytopes are not maximal as convex bodies without interior lattice points.
引用
收藏
页码:462 / 467
页数:6
相关论文
共 22 条
[1]  
ANDERSEN K, 2009, MAXIMAL INTEGRAL SIM
[2]  
Averkov G., 2010, MATH OPER R IN PRESS
[3]   On the number of lattice free polytopes [J].
Bárány, I ;
Kantor, JM .
EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (01) :103-110
[4]  
Barile M., 2009, P AM MATH SOC
[5]  
Barvinok A, 2002, Graduate Studies in Mathematics, V54
[6]   MULTIPLES OF LATTICE POLYTOPES WITHOUT INTERIOR LATTICE POINTS [J].
Batyrev, Victor ;
Nill, Benjamin .
MOSCOW MATHEMATICAL JOURNAL, 2007, 7 (02) :195-207
[7]   LATTICE-FREE POLYTOPES AND THEIR DIAMETER [J].
DEZA, M ;
ONN, S .
DISCRETE & COMPUTATIONAL GEOMETRY, 1995, 13 (01) :59-75
[8]  
Grunbaum B., 2003, GRADUATE TEXTS MATH
[9]   On the maximal width of empty lattice simplices [J].
Haase, C ;
Ziegler, GM .
EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (01) :111-119
[10]  
Joswig M., 2009, P 21 INT C FORM POW, P491