Semiparametric ARX neural-network models with an application to forecasting inflation

被引:48
作者
Chen, XH
Racine, J
Swanson, NR
机构
[1] Univ London London Sch Econ & Polit Sci, Dept Econ, London WC2A 2AE, England
[2] Univ S Florida, Dept Econ, Tampa, FL 33620 USA
[3] Texas A&M Univ, Dept Econ, College Stn, TX 77843 USA
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2001年 / 12卷 / 04期
关键词
beta-mixing; conditional mean and median regression; forecasting; radial basis; and ridgelet networks; root mean squared error rate; sigmoid;
D O I
10.1109/72.935081
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we examine semiparametric nonlinear autoregressive models with exogenous variables (NLARX) via three classes of artificial neural networks: the first one uses smooth sigmoid activation functions; the second one uses radial basis activation functions; and the third one uses ridgelet activation functions, We provide root mean squared error convergence rates for these ANN estimators of the conditional mean and median functions with stationary beta -mixing data. As an empirical application, we compare the forecasting performance of linear and semiparametric NLARX models of U.S. inflation. We find that all of our semiparametric models outperform a benchmark linear model based on various forecast performance measures, In addition, a semiparametric ridgelet NLARX model which includes various lags of historical inflation and the GDP gap is best in terms of both forecast mean squared error and forecast mean absolute deviation error.
引用
收藏
页码:674 / 683
页数:10
相关论文
共 38 条
[1]  
8Doukhan P., 2012, Mixing: Properties and Examples, V85
[2]   UNIVERSAL APPROXIMATION BOUNDS FOR SUPERPOSITIONS OF A SIGMOIDAL FUNCTION [J].
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) :930-945
[3]  
BARRON AR, 1994, MACH LEARN, V14, P115, DOI 10.1007/BF00993164
[4]   MODEL-FREE ASYMPTOTICALLY BEST FORECASTING OF STATIONARY ECONOMIC TIME-SERIES [J].
BIERENS, HJ .
ECONOMETRIC THEORY, 1990, 6 (03) :348-383
[5]   Harmonic analysis of neural networks [J].
Candès, EJ .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1999, 6 (02) :197-218
[6]  
Chen X., 1999, NONLINEARITY TEMPORA
[7]   Sieve extremum estimates for weakly dependent data [J].
Chen, XH ;
Shen, XT .
ECONOMETRICA, 1998, 66 (02) :289-314
[8]   Improved rates and asymptotic normality for nonparametric neural network estimators [J].
Chen, XH ;
White, H .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (02) :682-691
[9]  
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
[10]  
DENHAAN WJ, 1997, INFERENCES PARAMETRI