Quasi Sure Large Deviation for Increments of Fractional Brownian Motion in Holder Norm
被引:1
作者:
Xu, Jie
论文数: 0引用数: 0
h-index: 0
机构:
Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
Xu, Jie
[1
]
Zhu, Yun Min
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, Coll Math, Chengdu 610064, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
Zhu, Yun Min
[2
]
Liu, Ji Cheng
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
Liu, Ji Cheng
[3
]
机构:
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] Sichuan Univ, Coll Math, Chengdu 610064, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
In this paper, we first prove Schilder's theorem in Holder norm (0 <= alpha < 1) with respect to C-r,C-p-capacity. Then, based on this result, we further prove a sharpening of large deviation principle for increments of fractional Brownian motion for C-r,C-p-capacity in the stronger topology.