Quasi Sure Large Deviation for Increments of Fractional Brownian Motion in Holder Norm

被引:1
作者
Xu, Jie [1 ]
Zhu, Yun Min [2 ]
Liu, Ji Cheng [3 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] Sichuan Univ, Coll Math, Chengdu 610064, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
关键词
Schilder's theorem; large deviations; fractional Brownian motion; C-r; C-p-capacity; (R; P)-CAPACITIES; THEOREM;
D O I
10.1007/s10114-015-3560-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first prove Schilder's theorem in Holder norm (0 <= alpha < 1) with respect to C-r,C-p-capacity. Then, based on this result, we further prove a sharpening of large deviation principle for increments of fractional Brownian motion for C-r,C-p-capacity in the stronger topology.
引用
收藏
页码:913 / 920
页数:8
相关论文
共 17 条
  • [1] LARGE DEVIATIONS AND THE STRASSEN THEOREM IN HOLDER NORM
    BALDI, P
    BENAROUS, G
    KERKYACHARIAN, G
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1992, 42 (01) : 171 - 180
  • [2] Ciesielek Z, 1999, B ACAD POL SCI, V7, P217
  • [3] Csorg O M., 1981, STRONG APPROXIMATION
  • [4] Da Prato G., 1992, ENCY MATH ITS APPL, V44
  • [5] FERNIQUE X, 1970, CR ACAD SCI A MATH, V270, P1698
  • [6] A GENERALIZED FERNIQUE THEOREM AND APPLICATIONS
    Friz, Peter
    Oberhauser, Harald
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (10) : 3679 - 3688
  • [7] Large deviations for stochastic flows and their applications
    Gao, FQ
    Ren, JG
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2001, 44 (08): : 1016 - 1033
  • [8] Li WV, 2001, HANDB STAT, V19, P533, DOI 10.1016/S0169-7161(01)19019-X
  • [9] Li WV, 1999, ANN PROBAB, V27, P1556
  • [10] Functional limit theorems for d-dimensional FBM in Holder norm
    Lin, Zheng Yan
    Wang, Wen Sheng
    Hwang, Kyo Shin
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (06) : 1767 - 1780