Bayesian multivariate probability of success using historical data with type I error rate control
被引:6
|
作者:
Alt, Ethan M.
论文数: 0引用数: 0
h-index: 0
机构:
Brigham & Womens Hosp, Div Pharmacoepidemiol & Pharmacoecon, 75 Francis St, Boston, MA 02115 USA
Harvard Med Sch, 75 Francis St, Boston, MA 02115 USABrigham & Womens Hosp, Div Pharmacoepidemiol & Pharmacoecon, 75 Francis St, Boston, MA 02115 USA
Alt, Ethan M.
[1
,2
]
Psioda, Matthew A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ North Ctirolina, Dept Biostat, 135 Dauer Dr, Chapel Hill, NC 27599 USABrigham & Womens Hosp, Div Pharmacoepidemiol & Pharmacoecon, 75 Francis St, Boston, MA 02115 USA
Psioda, Matthew A.
[3
]
Ibrahim, Joseph G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ North Ctirolina, Dept Biostat, 135 Dauer Dr, Chapel Hill, NC 27599 USABrigham & Womens Hosp, Div Pharmacoepidemiol & Pharmacoecon, 75 Francis St, Boston, MA 02115 USA
Ibrahim, Joseph G.
[3
]
机构:
[1] Brigham & Womens Hosp, Div Pharmacoepidemiol & Pharmacoecon, 75 Francis St, Boston, MA 02115 USA
[2] Harvard Med Sch, 75 Francis St, Boston, MA 02115 USA
[3] Univ North Ctirolina, Dept Biostat, 135 Dauer Dr, Chapel Hill, NC 27599 USA
Average probability of success;
Multiplicity;
Seemingly unrelated regression;
CLINICAL-TRIALS;
SAMPLE-SIZE;
ASSURANCE;
D O I:
10.1093/biostatistics/kxab050
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
In clinical trials, it is common to have multiple clinical outcomes (e.g., coprimary endpoints or a primary and multiple secondary endpoints). It is often desirable to establish efficacy in at least one of multiple clinical outcomes, which leads to a multiplicity problem. In the frequentist paradigm, the most popular methods to correct for multiplicity are typically conservative. Moreover, despite guidance from regulators, it is difficult to determine the sample size of a future study with multiple clinical outcomes. In this article, we introduce a Bayesian methodology for multiple testing that asymptotically guarantees type I error control. Using a seemingly unrelated regression model, correlations between outcomes are specifically modeled, which enables inference on the joint posterior distribution of the treatment effects. Simulation results suggest that the proposed Bayesian approach is more powerful than the method of , which is commonly utilized in practice as a more powerful alternative to the ubiquitous Bonferroni correction. We further develop multivariate probability of success, a Bayesian method to robustly determine sample size in the presence of multiple outcomes.
机构:
George Washington Univ, Ctr Biostat, Dept Epidemiol & Biostat, Rockville, MD 20852 USA
George Washington Univ, Dept Stat, Rockville, MD 20852 USAGeorge Washington Univ, Ctr Biostat, Dept Epidemiol & Biostat, Rockville, MD 20852 USA
机构:
Univ Tsukuba, Grad Sch Comprehens Human Sci, Tsukuba, Ibaraki, Japan
Univ Tsukuba, Dept Biostat, Tsukuba Clin Res & Dev Org, 2-1-1 Amakubo, Tsukuba, Ibaraki 3058576, JapanUniv Tsukuba, Grad Sch Comprehens Human Sci, Tsukuba, Ibaraki, Japan
Ohigashi, Tomohiro
Maruo, Kazushi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tsukuba, Dept Biostat, Fac Med, Tsukuba, Ibaraki, JapanUniv Tsukuba, Grad Sch Comprehens Human Sci, Tsukuba, Ibaraki, Japan
Maruo, Kazushi
Sozu, Takashi
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Univ Sci, Dept Informat & Comp Technol, Fac Engn, Tokyo, JapanUniv Tsukuba, Grad Sch Comprehens Human Sci, Tsukuba, Ibaraki, Japan
Sozu, Takashi
Gosho, Masahiko
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tsukuba, Dept Biostat, Fac Med, Tsukuba, Ibaraki, JapanUniv Tsukuba, Grad Sch Comprehens Human Sci, Tsukuba, Ibaraki, Japan