Analytical Determination of Capacitance and Conductance Coupling Matrices for Assisting the Design of Capacitively Coupled Planar Power Conversion Apparatuses

被引:5
作者
Ge, Baoyun [1 ]
Ludois, Daniel C. [2 ]
机构
[1] C Mot Technol Inc, Madison, WI 53704 USA
[2] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Electrodes; Electrostatics; Stators; Rotors; Power conversion; Conformal mapping; Capacitance; conductance; conformal mapping; electrostatic machine; separation of variables; MAGNETIC-FIELD DISTRIBUTION; DC MOTORS; TOOLBOX; SYSTEM;
D O I
10.1109/JESTPE.2020.3018996
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The emergence of higher performance capacitively coupled power conversion systems, for example, electrostatic rotating machines and capacitive power transfer, prompts the need for tools to assist the design and optimization process. Finite-element analysis (FEA) has been the default method to analyze these systems, due to the complexity of solving the electrostatic field in a multipotential-multimaterial structure. However, the variational and discretized nature of FEA introduces a bottleneck in the speed of the optimization process. This article presents an analytical approach that is capable of solving problems with nonzero electrode thickness and multiple materials, to evaluate the capacitance coupling matrix in planar power conversion apparatuses as an alternative to FEA. The duality between the electric displacement and the current fields allows this method to easily compute the conductance matrix as well, yielding effective loss models. When benchmarked against FEA for a synchronous electrostatic machine, this proposed analytical solution shows less than 2% relative error and takes merely 1 s to complete the computation for each set of design parameters, whereas the FEA takes 9 h.
引用
收藏
页码:61 / 73
页数:13
相关论文
共 31 条
[1]  
Driscoll T. A., 2002, Schwarz-Christoffel Mapping (Cambridge Monographs on Applied and Computational Mathematics), V8
[2]   Algorithm 756: A MATLAB toolbox for Schwarz-Christoffel mapping [J].
Driscoll, TA .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (02) :168-186
[3]   Algorithm 843: Improvements to the Schwarz-Christoffel toolbox for MATLAB [J].
Driscoll, TA .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2005, 31 (02) :239-251
[4]   Numerical conformal mapping using cross-ratios and Delaunay triangulation [J].
Driscoll, TA ;
Vavasis, SA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (06) :1783-1803
[5]   FINITE BOUNDARY CORRECTIONS TO COPLANAR STRIPLINE ANALYSIS [J].
FOUADHANNA, V .
ELECTRONICS LETTERS, 1980, 16 (15) :604-606
[6]   High Torque Density Macro-scale Electrostatic Rotating Machines: Electrical Design, Generalized d-q Framework, and Demonstration [J].
Ge, Baoyun ;
Ghule, Aditya N. ;
Ludois, Daniel C. .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2019, 55 (02) :1225-1238
[7]   Three-Dimensional Printed Fluid-Filled Electrostatic Rotating Machine Designed with Conformal Mapping Methods [J].
Ge, Baoyun ;
Ghule, Aditya N. ;
Ludois, Daniel C. .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2017, 53 (05) :4348-4359
[8]  
Ge BY, 2016, IEEE T DIELECT EL IN, V23, P1924, DOI [10.1109/TDEI.2016.7556463, 10.1109/TDEI.2016.005643]
[9]   Design Concepts for a Fluid-Filled Three-Phase Axial-Peg-Style Electrostatic Rotating Machine Utilizing Variable Elastance [J].
Ge, Baoyun ;
Ludois, Daniel C. .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2016, 52 (03) :2156-2166
[10]  
Gibbs J.W., 1898, Nature, V59, P200