Hard carbons for sodium-ion batteries and beyond

被引:180
作者
Xie, Fei [1 ,2 ,3 ]
Xu, Zhen [2 ]
Guo, Zhenyu [2 ]
Titirici, Maria-Magdalena [2 ]
机构
[1] Chinese Acad Sci, Inst Phys, Key Lab Renewable Energy, Beijing Key Lab New Energy Mat & Devices, Beijing 100190, Peoples R China
[2] Imperial Coll London, Dept Chem Engn, London SW7 2AZ, England
[3] Queen Mary Univ London, Sch Phys & Astron, London E1 4NS, England
来源
PROGRESS IN ENERGY | 2020年 / 2卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
Sodium-ion batteries; hard carbons; anodes; energy storage; NITROGEN-DOPED CARBON; HIGH-CAPACITY ANODE; POROUS CARBON; LOW-COST; ENERGY-STORAGE; LITHIUM-ION; ELECTROCHEMICAL PERFORMANCE; MECHANISTIC INSIGHTS; NEGATIVE ELECTRODES; ACTIVATED CARBON;
D O I
10.1088/2516-1083/aba5f5
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Sodium-ion batteries (SIBs) are one of the most promising alternatives to lithium-ion batteries (LIBs), due to the much more abundant resources of Na compared with Li in the world. Developing SIB technology to satisfy the increased demand for energy storageis therefore a significant task. However, one of the biggest bottlenecks is the design of high-performance and low-cost anode materials, since the graphite anode in commercial LIBs is not suitable for SIBs due to thermal dynamic issues. Hard carbon materials have been regarded as having the greatest potential as anodes in commercial SIBs owing to their excellent cost-effectiveness, but their relatively limited performance compared to the graphite in LIBs as well as the dimness of the sodium storage mechanisms still need further investigation. In this review, we summarize the progress of recent research into hard carbons for SIB applications, including the fundamentals of SIBs, sodium storage mechanisms, structures and the electrochemical performances of different types of hard carbons in SIBs and other types of sodium-based energy storage as well as the main challenges in this field. We aim to provide a general insight into hard carbons and their applications in SIBs, opening up future perspectives and possible research directions.
引用
收藏
页数:30
相关论文
共 185 条
  • [1] [Anonymous], 2019, Angew. Chem
  • [2] A LAMELLAR COMPOUND OF SODIUM AND GRAPHITE
    ASHER, RC
    [J]. JOURNAL OF INORGANIC & NUCLEAR CHEMISTRY, 1959, 10 (3-4): : 238 - &
  • [3] Elucidation of the Sodium-Storage Mechanism in Hard Carbons
    Bai, Panxing
    He, Yongwu
    Zou, Xiaoxi
    Zhao, Xinxin
    Xiong, Peixun
    Xu, Yunhua
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (15)
  • [4] Structural Engineering of Multishelled Hollow Carbon Nanostructures for High-Performance Na-Ion Battery Anode
    Bin, De-Shan
    Li, Yunming
    Sun, Yong-Gang
    Duan, Shu-Yi
    Lu, Yaxiang
    Ma, Jianmin
    Cao, An-Min
    Hu, Yong-Sheng
    Wan, Li-Jun
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (26)
  • [5] Controlling the Compositional Chemistry in Single Nanoparticles for Functional Hollow Carbon Nanospheres
    Bin, De-Shan
    Chi, Zi-Xiang
    Li, Yutao
    Zhang, Ke
    Yang, Xinzheng
    Sun, Yong-Gang
    Piao, Jun-Yu
    Cao, An-Min
    Wan, Li-Jun
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (38) : 13492 - 13498
  • [6] New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon
    Bommier, Clement
    Surta, Todd Wesley
    Dolgos, Michelle
    Ji, Xiulei
    [J]. NANO LETTERS, 2015, 15 (09) : 5888 - 5892
  • [7] Lignin-Derived Holey, Layered, and Thermally Conductive 3D Scaffold for Lithium Dendrite Suppression
    Cao, Doxion
    Zhang, Qing
    Hafez, Ahmed M.
    Jiao, Yucong
    Ma, Yi
    Li, Hongyan
    Cheng, Zheng
    Niu, Chunming
    Zhu, Hongli
    [J]. SMALL METHODS, 2019, 3 (05):
  • [8] Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications
    Cao, Yuliang
    Xiao, Lifen
    Sushko, Maria L.
    Wang, Wei
    Schwenzer, Birgit
    Xiao, Jie
    Nie, Zimin
    Saraf, Laxmikant V.
    Yang, Zhengguo
    Liu, Jun
    [J]. NANO LETTERS, 2012, 12 (07) : 3783 - 3787
  • [9] Thin-walled, mesoporous and nitrogen-doped hollow carbon spheres using ionic liquids as precursors
    Chen, Aibing
    Yu, Yifeng
    Lv, Haijun
    Wang, Yanyan
    Shen, Shufeng
    Hu, Yongqi
    Li, Bo
    Zhang, Yue
    Zhang, Jian
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (04) : 1045 - 1047
  • [10] Transition metal dichalcogenides for alkali metal ion batteries: engineering strategies at the atomic level
    Chen, Biao
    Chao, Dongliang
    Liu, Enzuo
    Jaroniec, Mietek
    Zhao, Naiqin
    Qiao, Shi-Zhang
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (04) : 1096 - 1131