Re-balancing cellular energy substrate metabolism to mend the failing heart

被引:73
作者
Glatz, Jan F. C. [1 ]
Nabben, Miranda [1 ]
Young, Martin E. [2 ]
Schulze, P. Christian [3 ]
Taegtmeyer, Heinrich [4 ]
Luiken, Joost J. F. P. [1 ]
机构
[1] Maastricht Univ, Fac Hlth Med & Life Sci FHML, Dept Genet & Cell Biol, Maastricht, Netherlands
[2] Univ Alabama Birmingham, Dept Med, Birmingham, AL 35294 USA
[3] Friedrich Schiller Univ Jena, Univ Hosp Jena, Dept Internal Med 1, Div Cardiol Angiol Pneumol & Intens Med Care, Jena, Germany
[4] Univ Texas Hlth Sci Ctr Houston, McGovern Med Sch, Dept Internal Med, Div Cardiol, Houston, TX 77030 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE | 2020年 / 1866卷 / 05期
关键词
Long-chain fatty acids; Glucose; Energy homeostasis; Substrate balance; Cardiac contractile function; Heart failure; Diabetes; CITRIC-ACID CYCLE; PRESSURE-OVERLOAD; GENE-EXPRESSION; CARDIAC METABOLISM; KETONE-BODIES; FATTY-ACIDS; RAT HEARTS; FAILURE; LIPOTOXICITY; ANAPLEROSIS;
D O I
10.1016/j.bbadis.2019.165579
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fatty acids and glucose are the main substrates for myocardial energy provision. Under physiologic conditions, there is a distinct and finely tuned balance between the utilization of these substrates. Using the non-ischemic heart as an example, we discuss that upon stress this substrate balance is upset resulting in an over-reliance on either fatty acids or glucose, and that chronic fuel shifts towards a single type of substrate appear to be linked with cardiac dysfunction. These observations suggest that interventions aimed at re-balancing a tilted substrate preference towards an appropriate mix of substrates may result in restoration of cardiac contractile performance. Examples of manipulating cellular substrate uptake as a means to re-balance fuel supply, being associated with mended cardiac function underscore this concept. We also address the molecular mechanisms underlying the apparent need for a fatty acid-glucose fuel balance. We propose that re-balancing cellular fuel supply, in particular with respect to fatty acids and glucose, may be an effective strategy to treat the failing heart.
引用
收藏
页数:8
相关论文
共 81 条
[21]   Complex Energy Metabolic Changes in Heart Failure With Preserved Ejection Fraction and Heart Failure With Reduced Ejection Fraction [J].
De Jong, Kirstie A. ;
Lopaschuk, Gary D. .
CANADIAN JOURNAL OF CARDIOLOGY, 2017, 33 (07) :860-871
[22]   Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy [J].
Depre, C ;
Shipley, GL ;
Chen, WH ;
Han, QY ;
Doenst, T ;
Moore, ML ;
Stepkowski, S ;
Davies, PJA ;
Taegtmeyer, H .
NATURE MEDICINE, 1998, 4 (11) :1269-1275
[23]   Protein kinase-D1 overexpression prevents lipid-induced cardiac insulin resistance [J].
Dirkx, Ellen ;
van Eys, Guillaume J. J. M. ;
Schwenk, Robert W. ;
Steinbusch, Laura K. M. ;
Hoebers, Nicole ;
Coumans, Will A. ;
Peters, Tim ;
Janssen, Ben J. ;
Brans, Boudewijn ;
Vogg, Andreas T. ;
Neumann, Dietbert ;
Glatz, Jan F. C. ;
Luiken, Joost J. F. P. .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2014, 76 :208-217
[24]   Load-induced changes in vivo alter substrate fluxes and insulin responsiveness of rat heart in vitro [J].
Doenst, T ;
Goodwin, GW ;
Cedars, AM ;
Wang, M ;
Stepkowski, S ;
Taegtmeyer, H .
METABOLISM-CLINICAL AND EXPERIMENTAL, 2001, 50 (09) :1083-1090
[25]  
Dominguez F, 2016, REV ESP CARDIOL, V69, P178, DOI [10.1016/j.recesp.2015.10.018, 10.1016/j.rec.2015.10.015]
[26]   Mouse Cardiac Acyl Coenzyme A Synthetase 1 Deficiency Impairs Fatty Acid Oxidation and Induces Cardiac Hypertrophy [J].
Ellis, Jessica M. ;
Mentock, Shannon M. ;
DePetrillo, Michael A. ;
Koves, Timothy R. ;
Sen, Shiraj ;
Watkins, Steven M. ;
Muoio, Deborah M. ;
Cline, Gary W. ;
Taegtmeyer, Heinrich ;
Shulman, Gerald I. ;
Willis, Monte S. ;
Coleman, Rosalind A. .
MOLECULAR AND CELLULAR BIOLOGY, 2011, 31 (06) :1252-1262
[27]   Very-long-chain acyl-coenzyme A dehydrogenase deficiency in mice [J].
Exil, VJ ;
Roberts, RL ;
Sims, H ;
McLaughlin, JE ;
Malkin, RA ;
Gardner, CD ;
Ni, GM ;
Rottman, JN ;
Strauss, AW .
CIRCULATION RESEARCH, 2003, 93 (05) :448-455
[28]   Cardiac oxidative stress in diabetes: Mechanisms and therapeutic potential [J].
Faria, Alyssa ;
Persaud, Shanta J. .
PHARMACOLOGY & THERAPEUTICS, 2017, 172 :50-62
[29]   CITRATE AS AN INTERMEDIARY IN INHIBITION OF PHOSPHOFRUCTOKINASE IN RAT HEART MUSCLE BY FATTY ACIDS, KETONE BODIES, PYRUVATE, DIABETES AND STARVATION [J].
GARLAND, PB ;
RANDLE, PJ ;
NEWSHOLME, EA .
NATURE, 1963, 200 (490) :169-+
[30]   Anaplerosis of the citric acid cycle: role in energy metabolism of heart and skeletal muscle [J].
Gibala, MJ ;
Young, ME ;
Taegtmeyer, H .
ACTA PHYSIOLOGICA SCANDINAVICA, 2000, 168 (04) :657-665