Atomic-Scale Modeling of Particle Size Effects for the Oxygen Reduction Reaction on Pt

被引:224
|
作者
Tritsaris, G. A. [1 ,2 ]
Greeley, J. [3 ]
Rossmeisl, J. [1 ]
Norskov, J. K. [2 ,4 ]
机构
[1] Tech Univ Denmark, Dept Phys, Ctr Atom Scale Mat Design, DK-2800 Lyngby, Denmark
[2] SLAC Natl Accelerator Lab, Ctr Interface Sci & Catalysis, Menlo Pk, CA 94025 USA
[3] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[4] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
关键词
Electrocatalysis; Nanoparticles; DFT; Particle size effect; Oxygen electroreduction; Platinum; ACTIVE-SITES; CATALYSTS; SURFACES; TRENDS;
D O I
10.1007/s10562-011-0637-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We estimate the activity of the oxygen reduction reaction on platinum nanoparticles of sizes of practical importance. The proposed model explicitly accounts for surface irregularities and their effect on the activity of neighboring sites. The model reproduces the experimentally observed trends in both the specific and mass activities for particle sizes in the range between 2 and 30 nm. The mass activity is calculated to be maximized for particles of a diameter between 2 and 4 nm. Our study demonstrates how an atomic-scale description of the surface microstructure is a key component in understanding particle size effects on the activity of catalytic nanoparticles.
引用
收藏
页码:909 / 913
页数:5
相关论文
共 50 条
  • [1] Atomic-Scale Modeling of Particle Size Effects for the Oxygen Reduction Reaction on Pt
    G. A. Tritsaris
    J. Greeley
    J. Rossmeisl
    J. K. Nørskov
    Catalysis Letters, 2011, 141 : 909 - 913
  • [2] Atomic-Scale Design of High-Performance Pt-Based Electrocatalysts for Oxygen Reduction Reaction
    Ying, Jie
    FRONTIERS IN CHEMISTRY, 2021, 9
  • [3] Size effects and strain localization in atomic-scale cleavage modeling
    Elsner, B. A. M.
    Mueller, S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (34)
  • [4] Tuning the Electrocatalytic Oxygen Reduction Reaction Activity of Pt-Co Nanocrystals by Cobalt Concentration with Atomic-Scale Understanding
    Lee, Jennifer D.
    Jishkariani, Davit
    Zhao, Yingrui
    Najmr, Stan
    Rosen, Daniel
    Kikkawa, James M.
    Stach, Eric A.
    Murray, Christopher B.
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (30) : 26789 - 26797
  • [5] Theoretical trends in particle size effects for the oxygen reduction reaction
    Greeley, J.
    Rossmeisl, J.
    Hellman, A.
    Norskov, J. K.
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2007, 221 (9-10): : 1209 - 1220
  • [6] The Oxygen Reduction Reaction on Pt: Why Particle Size and Interparticle Distance Matter
    Inaba, Masanori
    Zana, Alessandro
    Quinson, Jonathan
    Bizzotto, Francesco
    Dosche, Carsten
    Dworzak, Alexandra
    Oezaslan, Mehtap
    Simonsen, Soren Bredmose
    Kuhn, Luise Theil
    Arenz, Matthias
    ACS CATALYSIS, 2021, 11 (12) : 7144 - 7153
  • [7] Influence of the electrolyte on the particle size effect of the oxygen reduction reaction on Pt nanoparticles
    Ashton, S. J.
    Novo, A.
    Mayrhofer, K. J. J.
    Arenz, M.
    PROTON EXCHANGE MEMBRANE FUEL CELLS 9, 2009, 25 (01): : 455 - 462
  • [8] Atomic-scale identification of active sites of oxygen reduction nanocatalysts
    Yang, Yao
    Zhou, Jihan
    Zhao, Zipeng
    Sun, Geng
    Moniri, Saman
    Ophus, Colin
    Yang, Yongsoo
    Wei, Ziyang
    Yuan, Yakun
    Zhu, Cheng
    Liu, Yang
    Sun, Qiang
    Jia, Qingying
    Heinz, Hendrik
    Ciston, Jim
    Ercius, Peter
    Sautet, Philippe
    Huang, Yu
    Miao, Jianwei
    NATURE CATALYSIS, 2024, 7 (07): : 796 - 806
  • [9] Atomic-scale modeling of nanoconstrictions
    Mukherjee, S
    Litvinov, D
    Khizroev, S
    IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (04) : 2143 - 2145
  • [10] The performance of structurally well-defined AgxPt1-x/Pt(111) surface alloys in the oxygen reduction reaction - An atomic-scale picture
    Beckord, Stephan
    Brimaud, Sylvain
    Behm, R. Juergen
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 819 : 401 - 409