ABSORBING BOUNDARY CONDITIONS FOR GENERAL NONLINEAR SCHRODINGER EQUATIONS

被引:53
作者
Antoine, Xavier [1 ]
Besse, Christophe [2 ]
Klein, Pauline [1 ]
机构
[1] Nancy Univ, Inst Elie Cartan Nancy, INRIA CORIDA Team, CNRS UMR 7502, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Lille 1 Sci & Technol, Univ Lille Nord France, INRIA SIMPAF Team, CNRS UMR 8524,Lab Paul Painleve, F-59655 Villeneuve Dascq, France
关键词
absorbing boundary conditions; pseudodifferential operators; nonlinear Schrodinger equation with potential; stable semidiscrete schemes; fixed point algorithm; relaxation scheme; PERFECTLY MATCHED LAYER; NUMERICAL-SOLUTION; SCHEMES;
D O I
10.1137/090780535
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper addresses the construction of different families of absorbing boundary conditions for the one- and two-dimensional Schrodinger equations with a general variable nonlinear potential. Various semidiscrete time schemes are built for the associated initial boundary value problems. Finally, some numerical simulations give a comparison of the various absorbing boundary conditions and associated schemes to analyze their accuracy and efficiency.
引用
收藏
页码:1008 / 1033
页数:26
相关论文
共 35 条
[1]   Numerical schemes for the simulation of the two-dimensional Schrodinger equation using non-reflecting boundary conditions [J].
Antoine, X ;
Besse, C ;
Mouysset, V .
MATHEMATICS OF COMPUTATION, 2004, 73 (248) :1779-1799
[2]   Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrodinger equation [J].
Antoine, X ;
Besse, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 188 (01) :157-175
[3]   Artificial boundary conditions for one-dimensional cubic nonlinear Schrodinger equations [J].
Antoine, X ;
Besse, C ;
Descombes, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 43 (06) :2272-2293
[4]  
ANTOINE X, 2010, ABSORBING BOUN UNPUB
[5]  
ANTOINE X, 2010, CONT APPL MATH, V15, P3
[6]  
Antoine X., 2009, CUBO, V11, P29
[7]  
Antoine X, 2008, COMMUN COMPUT PHYS, V4, P729
[8]   Absorbing boundary conditions for the one-dimensional Schrodinger equation with an exterior repulsive potential [J].
Antoine, Xavier ;
Besse, Christophe ;
Klein, Pauline .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (02) :312-335
[9]   Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation [J].
Bao, WZ ;
Jaksch, D ;
Markowich, PA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) :318-342
[10]   A relaxation scheme for the nonlinear Schrodinger equation [J].
Besse, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (03) :934-952