DSPLMF: A Method for Cancer Drug Sensitivity Prediction Using a Novel Regularization Approach in Logistic Matrix Factorization

被引:35
作者
Emdadi, Akram [1 ]
Eslahchi, Changiz [1 ,2 ]
机构
[1] Shahid Beheshti Univ, Fac Math, Dept Comp Sci, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Biol Sci, Tehran, Iran
关键词
cancer; drug response; recommender system; matrix factorization; personalized treatment; DEACETYLASE INHIBITOR; RAF/MEK/ERK PATHWAY; GROWTH; PANOBINOSTAT;
D O I
10.3389/fgene.2020.00075
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The ability to predict the drug response for cancer disease based on genomics information is an essential problem in modern oncology, leading to personalized treatment. By predicting accurate anticancer responses, oncologists achieve a complete understanding of the effective treatment for each patient. In this paper, we present DSPLMF (Drug Sensitivity Prediction using Logistic Matrix Factorization) approach based on Recommender Systems. DSPLMF focuses on discovering effective features of cell lines and drugs for computing the probability of the cell lines are sensitive to drugs by logistic matrix factorization approach. Since similar cell lines and similar drugs may have similar drug responses and incorporating similarities between cell lines and drugs can potentially improve the drug response prediction, gene expression profile, copy number alteration, and single-nucleotide mutation information are used for cell line similarity and chemical structures of drugs are used for drug similarity. Evaluation of the proposed method on CCLE and GDSC datasets and comparison with some of the state-of-the-art methods indicates that the result of DSPLMF is significantly more accurate and more efficient than these methods. To demonstrate the ability of the proposed method, the obtained latent vectors are used to identify subtypes of cancer of the cell line and the predicted IC50 values are used to depict drug-pathway associations. The source code of DSPLMF method is available in https://github.com/emdadi/DSPLMF.
引用
收藏
页数:14
相关论文
共 25 条
[1]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[2]   A community effort to assess and improve drug sensitivity prediction algorithms [J].
Costello, James C. ;
Heiser, Laura M. ;
Georgii, Elisabeth ;
Gonen, Mehmet ;
Menden, Michael P. ;
Wang, Nicholas J. ;
Bansal, Mukesh ;
Ammad-ud-din, Muhammad ;
Hintsanen, Petteri ;
Khan, Suleiman A. ;
Mpindi, John-Patrick ;
Kallioniemi, Olli ;
Honkela, Antti ;
Aittokallio, Tero ;
Wennerberg, Krister ;
Collins, James J. ;
Gallahan, Dan ;
Singer, Dinah ;
Saez-Rodriguez, Julio ;
Kaski, Samuel ;
Gray, Joe W. ;
Stolovitzky, Gustavo .
NATURE BIOTECHNOLOGY, 2014, 32 (12) :1202-U57
[3]   A Phase II Study of the Histone Deacetylase Inhibitor Panobinostat (LBH589) in Pretreated Patients with Small-Cell Lung Cancer [J].
de Marinis, Filippo ;
Atmaca, Akin ;
Tiseo, Marcello ;
Giuffreda, Libero ;
Rossi, Antonio ;
Gebbia, Vittorio ;
D'Antonio, Chiara ;
Dal Zotto, Laura ;
Al-Batran, Salah-Eddin ;
Marsoni, Silvia ;
Wolf, Martin .
JOURNAL OF THORACIC ONCOLOGY, 2013, 8 (08) :1091-1094
[4]  
Hand D., 1999, ADV INTELLIGENT DATA
[5]   Feature Selection with the Boruta Package [J].
Kursa, Miron B. ;
Rudnicki, Witold R. .
JOURNAL OF STATISTICAL SOFTWARE, 2010, 36 (11) :1-13
[6]   Development of a Drug-Response Modeling Framework to Identify Cell Line Derived Translational Biomarkers That Can Predict Treatment Outcome to Erlotinib or Sorafenib [J].
Li, Bin ;
Shin, Hyunjin ;
Gulbekyan, Georgy ;
Pustovalova, Olga ;
Nikolsky, Yuri ;
Hope, Andrew ;
Bessarabova, Marina ;
Schu, Matthew ;
Kolpakova-Hart, Elona ;
Merberg, David ;
Dorner, Andrew ;
Trepicchio, William L. .
PLOS ONE, 2015, 10 (06)
[7]   Molecular signatures database (MSigDB) 3.0 [J].
Liberzon, Arthur ;
Subramanian, Aravind ;
Pinchback, Reid ;
Thorvaldsdottir, Helga ;
Tamayo, Pablo ;
Mesirov, Jill P. .
BIOINFORMATICS, 2011, 27 (12) :1739-1740
[8]   Anti-cancer Drug Response Prediction Using Neighbor-Based Collaborative Filtering with Global Effect Removal [J].
Liu, Hui ;
Zhao, Yan ;
Zhang, Lin ;
Chen, Xing .
MOLECULAR THERAPY-NUCLEIC ACIDS, 2018, 13 :303-311
[9]   Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5 [J].
Liu, Li ;
Cao, Yichen ;
Chen, Charles ;
Zhang, Xiaomei ;
McNabola, Angela ;
Wilkie, Dean ;
Wilhelm, Scott ;
Lynch, Mark ;
Carter, Christopher .
CANCER RESEARCH, 2006, 66 (24) :11851-11858
[10]   Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance [J].
McCubrey, James A. ;
Steelman, Linda S. ;
Chappell, William H. ;
Abrams, Stephen L. ;
Wong, Ellis W. T. ;
Chang, Fumin ;
Lehmann, Brian ;
Terrian, David M. ;
Milella, Michele ;
Tafuri, Agostino ;
Stivala, Franca ;
Libra, Massimo ;
Basecke, Jorg ;
Evangelisti, Camilla ;
Martelli, Alberto M. ;
Franklin, Richard A. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2007, 1773 (08) :1263-1284