Sharp estimates for large coupling convergence with applications to Dirichlet operators

被引:14
作者
Ben Amor, Ali [2 ]
Brasche, Johannes F. [1 ]
机构
[1] Tech Univ Clausthal, Inst Math, D-38678 Clausthal Zellerfeld, Germany
[2] IPEI Tunis, Tunis 1008, Tunisia
关键词
Schatten class; time changed Dirichlet form; equilibrium measure; killing measure;
D O I
10.1016/j.jfa.2007.10.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a nonnegative selfadjoint operator, epsilon the closed quadratic form associated with H, and P a nonnegative quadratic form such that epsilon + P is closed and D(P) superset of D(H). For every beta > 0 let H-beta be the selfadjoint operator associated with epsilon + beta P. The pairs (H, P) satisfying L(H, P) := lim inf beta(beta ->infinity) parallel to(H-beta + 1)(-1) - lim(beta'->infinity) (H-beta' + 1)-1 parallel to < infinity are characterized. A sufficient condition for convergence of the operators (H-beta + 1)(-1) within a Schatten von Neumann class of finite order is derived. It is shown that L(H, P) = 1, if epsilon is a regular conservative Dirichlet form with the strong local property and P the killing form corresponding to the equilibrium measure of a closed set with finite capacity and nonempty interior. An example is given where L(H, P) is finite, H is a regular Dirichlet operator and P the killing form corresponding to a measure which has infinite mass and a support with infinite capacity. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:454 / 475
页数:22
相关论文
共 9 条
[1]   Sobolev-Orlicz inequalities, ultracontractivity and spectra of time changed Dirichlet forms [J].
Ben Amor, Ali .
MATHEMATISCHE ZEITSCHRIFT, 2007, 255 (03) :627-647
[2]  
Brasche J, 2005, PROG NONLIN, V64, P63
[3]   Dynkin's formula and large coupling convergence [J].
Brasche, J ;
Demuth, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 219 (01) :34-69
[4]   Upper bounds for Neumann-Schatten norms [J].
Brasche, JF .
POTENTIAL ANALYSIS, 2001, 14 (02) :175-205
[5]   SCHRODINGER-OPERATORS - GEOMETRIC ESTIMATES IN TERMS OF THE OCCUPATION TIME [J].
DEMUTH, M ;
KIRSCH, W ;
MCGILLIVRAY, I .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (1-2) :37-57
[6]   ON LARGE COUPLING OPERATOR NORM CONVERGENCES OF RESOLVENT DIFFERENCES [J].
DEMUTH, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (06) :1522-1530
[7]  
Fukushima M., 2011, De Gruyter Stud. Math., V19
[9]  
Stollmann P., 1994, STORUNGSTHEORIE DIRI