Uniqueness and multiplicity of positive solutions for one-dimensional prescribed mean curvature equation in Minkowski space

被引:9
作者
He, Zhiqian [1 ]
Miao, Liangying [2 ]
机构
[1] Qinghai Univ, Dept Basic Teaching & Res, Xining 810016, Peoples R China
[2] Qinghai Nationalities Univ, Sch Math & Stat, Xining 810007, Peoples R China
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 04期
关键词
mean curvature equation; positive solutions; multiplicity; uniqueness; cone; DIRICHLET PROBLEM; RADIAL SOLUTIONS; HYPERSURFACES;
D O I
10.3934/math.2020249
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the uniqueness and multiplicity of positive solutions of one-dimensional prescribed mean curvature equation {-(u'/root 1 - u'(2))' = lambda f(u), u(x) > 0, -1 < x < 1, u(-1) = u(1) = 0, where lambda is a positive parameter. The main tool is the fixed point index in cones.
引用
收藏
页码:3840 / 3850
页数:11
相关论文
共 50 条
[41]   A modified Picone-type identity and the uniqueness of positive symmetric solutions for a prescribed mean curvature problem [J].
Lee, Yong-Hoon ;
Yang, Rui .
ADVANCED NONLINEAR STUDIES, 2023, 23 (01)
[42]   Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations. II [J].
Pan, Hongjing ;
Xing, Ruixiang .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (11) :3751-3768
[43]   A BIFURCATION PHENOMENON FOR ONE-DIMENSIONAL MINKOWSKI-CURVATURE EQUATION [J].
Lee, Yong-Hoon ;
Yang, Rui .
HONAM MATHEMATICAL JOURNAL, 2021, 43 (03) :561-570
[44]   Positive solutions of the prescribed mean curvature equation with non-homogeneous mixed boundary conditions [J].
Obersnel, Franco ;
Omari, Pierpaolo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 441
[45]   Time-map analysis to establish the exact number of positive solutions of one-dimensional prescribed mean curvature equations [J].
Feng, Meiqiang ;
Zhang, Xuemei .
BOUNDARY VALUE PROBLEMS, 2014, :1-16
[46]   Positive radial solutions for Dirichlet problems involving the mean curvature operator in Minkowski space [J].
He, Zhiqian ;
Miao, Liangying .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2022, 23 (7-8) :1195-1202
[47]   Positive rotationally symmetric solutions for a Dirichlet problem involving the higher mean curvature operator in Minkowski space [J].
Ma, Ruyun ;
Xu, Man .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 460 (01) :33-46
[48]   π/4-tangentiality of solutions for one-dimensional Minkowski-curvature problems [J].
Yang, Rui ;
Sim, Inbo ;
Lee, Yong-Hoon .
ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) :1463-1479
[49]   On the multiplicity of nodal solutions of a prescribed mean curvature problem [J].
Bonheure, Denis ;
Derlet, Ann ;
de Valeriola, Sebastien .
MATHEMATISCHE NACHRICHTEN, 2013, 286 (11-12) :1072-1086
[50]   BIFURCATION DIAGRAMS OF POSITIVE SOLUTIONS FOR ONE-DIMENSIONAL MINKOWSKI-CURVATURE PROBLEM AND ITS APPLICATIONS [J].
Huang, Shao-Yuan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (06) :3443-3462