Uniqueness and multiplicity of positive solutions for one-dimensional prescribed mean curvature equation in Minkowski space

被引:9
作者
He, Zhiqian [1 ]
Miao, Liangying [2 ]
机构
[1] Qinghai Univ, Dept Basic Teaching & Res, Xining 810016, Peoples R China
[2] Qinghai Nationalities Univ, Sch Math & Stat, Xining 810007, Peoples R China
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 04期
关键词
mean curvature equation; positive solutions; multiplicity; uniqueness; cone; DIRICHLET PROBLEM; RADIAL SOLUTIONS; HYPERSURFACES;
D O I
10.3934/math.2020249
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the uniqueness and multiplicity of positive solutions of one-dimensional prescribed mean curvature equation {-(u'/root 1 - u'(2))' = lambda f(u), u(x) > 0, -1 < x < 1, u(-1) = u(1) = 0, where lambda is a positive parameter. The main tool is the fixed point index in cones.
引用
收藏
页码:3840 / 3850
页数:11
相关论文
共 50 条
[31]   Positive solutions of the prescribed mean curvature equation with exponential critical growth [J].
Figueiredo, Giovany M. ;
Radulescu, Vicentiu D. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (05) :2213-2233
[32]   A one-dimensional prescribed curvature equation modeling the corneal shape [J].
Isabel Coelho ;
Chiara Corsato ;
Pierpaolo Omari .
Boundary Value Problems, 2014
[33]   A one-dimensional prescribed curvature equation modeling the corneal shape [J].
Coelho, Isabel ;
Corsato, Chiara ;
Omari, Pierpaolo .
BOUNDARY VALUE PROBLEMS, 2014,
[34]   Isolated singularities of the prescribed mean curvature equation in Minkowski 3-space [J].
Galvez, Jose A. ;
Jimenez, Asun ;
Mira, Pablo .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (06) :1631-1644
[35]   Positive solutions of the Dirichlet problem for the prescribed mean curvature equation [J].
Obersnel, Franco ;
Omari, Pierpaolo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (07) :1674-1725
[36]   Bifurcation and nodal solutions of mean curvature equation with indefinite weight in Minkowski space [J].
Ma, Ruyun ;
Yang, Wei ;
Su, Xiaoxiao .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2025, 76 (02)
[37]   On the evolutionary bifurcation curves for the one-dimensional prescribed mean curvature equation with logistic type [J].
Zhang, Jiajia ;
Qiao, Yuanhua ;
Duan, Lijuan ;
Miao, Jun .
OPEN MATHEMATICS, 2021, 19 (01) :927-939
[38]   Positive solutions for Dirichlet problems involving the mean curvature operator in Minkowski space [J].
Ma, Ruyun .
MONATSHEFTE FUR MATHEMATIK, 2018, 187 (02) :315-325
[39]   Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space [J].
Bereanu, Cristian ;
Jebelean, Petru ;
Torres, Pedro J. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (01) :270-287
[40]   GLOBAL BIFURCATION AND EXACT MULTIPLICITY OF POSITIVE SOLUTIONS FOR THE ONE-DIMENSIONAL MINKOWSKI-CURVATURE PROBLEM WITH SIGN-CHANGING NONLINEARITY [J].
Huang, Shao-Yuan .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (06) :3267-3284