Uniqueness and multiplicity of positive solutions for one-dimensional prescribed mean curvature equation in Minkowski space

被引:9
作者
He, Zhiqian [1 ]
Miao, Liangying [2 ]
机构
[1] Qinghai Univ, Dept Basic Teaching & Res, Xining 810016, Peoples R China
[2] Qinghai Nationalities Univ, Sch Math & Stat, Xining 810007, Peoples R China
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 04期
关键词
mean curvature equation; positive solutions; multiplicity; uniqueness; cone; DIRICHLET PROBLEM; RADIAL SOLUTIONS; HYPERSURFACES;
D O I
10.3934/math.2020249
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the uniqueness and multiplicity of positive solutions of one-dimensional prescribed mean curvature equation {-(u'/root 1 - u'(2))' = lambda f(u), u(x) > 0, -1 < x < 1, u(-1) = u(1) = 0, where lambda is a positive parameter. The main tool is the fixed point index in cones.
引用
收藏
页码:3840 / 3850
页数:11
相关论文
共 50 条
[21]   MULTIPLE POSITIVE SOLUTIONS FOR DIRICHLET PROBLEM OF PRESCRIBED MEAN CURVATURE EQUATIONS IN MINKOWSKI SPACES [J].
Ma, Ruyun ;
Chen, Tianlan .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
[22]   Analysis of a one-dimensional prescribed mean curvature equation with singular nonlinearity [J].
Brubaker, Nicholas D. ;
Pelesko, John A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (13) :5086-5102
[23]   Multiplicity and Calabi–Bernstein type asymptotic property of positive solutions for one-dimensional Minkowski-curvature problems [J].
Rui Yang .
Journal of Fixed Point Theory and Applications, 2022, 24
[24]   Global structure of multiple positive solutions for the kth mean curvature in Minkowski space [J].
Chen, Tianlan ;
Goodrich, Christopher S. .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2025, 27 (02)
[25]   Positive radial solutions of a mean curvature equation in Lorentz-Minkowski space with strong singularity [J].
Pei, Minghe ;
Wang, Libo .
APPLICABLE ANALYSIS, 2020, 99 (09) :1631-1637
[26]   Existence of positive solutions for one dimensional Minkowski curvature problem with singularity [J].
Cheng, Tingzhi ;
Xu, Xianghui .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2023, 25 (03)
[27]   Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations [J].
Pan, Hongjing ;
Xing, Ruixiang .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (04) :1234-1260
[28]   Positive Solutions for BVPs with One-dimensional Mean Curvature Operator [J].
do O, Joao Marcos ;
Orpel, Aleksandra .
ADVANCED NONLINEAR STUDIES, 2014, 14 (02) :261-271
[29]   Multiplicity of solutions for mean curvature operators with minimum and maximum in Minkowski space [J].
Yanhong Zhang ;
Suyun Wang .
Advances in Difference Equations, 2019
[30]   A VARIATIONAL APPROACH FOR ONE-DIMENSIONAL PRESCRIBED MEAN CURVATURE PROBLEMS [J].
Afrouzi, Ghasem A. ;
Hadjian, Armin ;
Bisci, Giovanni Molica .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 97 (02) :145-161