Evaluation of potential printed wiring board materials: Thermoplastic polyimide plus polymer liquid crystal blends

被引:0
|
作者
Brostow, W [1 ]
D'Souza, NA [1 ]
Gopalanarayanan, B [1 ]
Jacobs, EG [1 ]
机构
[1] Univ N Texas, Dept Mat Sci, Denton, TX 76203 USA
来源
ELECTRONIC PACKAGING MATERIALS SCIENCE X | 1998年 / 515卷
关键词
D O I
10.1557/PROC-515-125
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Polymer liquid crystals (PLCs) have potential applications as printed wiring board materials and in other aspects of plastic packaging. They have a number of desirable properties such as low moisture absorption, thermoplastic behavior, and low thermal expansivity. However, PLCs can have significant anisotropy in expansivity with negative expansivities in the drawing or molding direction and relatively low positive expansivities in the transverse directions. By incorporating PLCs into an engineering polymer (EP) matrix, in our case a thermoplastic polyimide (TPI), we expected to be able to control the expansivity of the resulting blend - thereby aiding in long-term service performance and reliability. Properties such as low moisture absorption, dimensional stability at elevated temperatures, good adhesion properties, and reworkability were also sought. In this paper, we report on our work to process a TPI/PLC blend and characterize the thermal properties of the blends. An amorphous TPI was chosen over a semicrystalline one because of a thermo-irreversible cold crystallization in the latter, causing undesirable changes in the morphology and poor adhesion to metals. Our evaluations of TPIs through thermally stimulated depolarization (TSD) and temperature-modulated differential scanning calorimetry (TMDSC) reveal sub-glass transition relaxations. We have investigated the selected semicrystalline TPI + PLC pair in the entire composition range, and concluded that the narrower range, up to 30 wt. % of the PLC, is sufficient for the achievement of our objectives. The glass transition temperature Tg = 240 degrees C of the TPI determined by DSC is unaffected by variations of the PLC concentration. The cold crystallization temperature of the semicrystalline TPI decreases with increasing PLC concentration but upon formation of the LC-rich islands this effect becomes smaller. All the blends exhibit degradation onset temperature over 520 degrees C. The thermal conductivity of the amorphous TPI + PLC blends varies as a function of the PLC concentration. The blends show very good film formability. The addition of the PLC improves the processability of the TPI. Thermomechanical analysis (TMA) reveals that the desired control of the expansivity of the blends is also achieved by varying the PLC concentration.
引用
收藏
页码:125 / 130
页数:6
相关论文
共 24 条
  • [21] A Study of Critical Processing Technologies of Liquid Crystal Polymer Printed Circuit Board for High Speed Application
    Yung, K. C.
    Liem, H.
    Choy, H.
    Yue, T. M.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2010, 116 (04) : 2348 - 2358
  • [22] Evaluation of dielectric properties of printed wiring board materials by using a microstrip-ring and strip-line ring resonator methods
    Heinola, J.-M.
    Strom, J.-P.
    IEEE ELECTRICAL INSULATION MAGAZINE, 2007, 23 (03) : 23 - 29
  • [23] Characterization of injection-molded high-strength/high-stiffness thermoplastic hybrid materials containing thermotropic liquid crystal polymer (LCP), polyphenylene sulfide (PPS) with carbon fibers
    Kim, Myung Hyun
    Kim, Sung Han
    Kim, Byung Sun
    Wee, Jung-Wook
    Choi, Byoung-Ho
    COMPOSITES SCIENCE AND TECHNOLOGY, 2018, 168 : 272 - 278
  • [24] Characterization of injection-molded high-strength/high-stiffness thermoplastic hybrid materials containing thermotropic liquid crystal polymer (LCP), polyphenylene sulfide (PPS) with carbon fibers (vol 168, pg 272, 2018)
    Kim, Myung Hyun
    Kim, Sung Han
    Kim, Byung Sun
    Wee, Jung-Wook
    Choi, Byoung-Ho
    COMPOSITES SCIENCE AND TECHNOLOGY, 2019, 181